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General Intruduction

Structure and electronic properties of any material are strongly correlated. Electronic

properties can be tuned by varying the parameters that can induce changes in the structure

of the material [1–5]. For example, considering the well known perovskite nickelates

with the general formula RNiO3 where R = Lu to La, is a rare earth atom, it has been

observed that changing the rare earth atom can induce changes in the electronic structure

of the system. The system can behave as an insulator or metal, with a variation in the

temperature at which the metal to insulator transition occurs [6–8]. This happens as

a result of structural changes that occurs when one changes the rare earth atom. This

suggests that we can tune the electronic properties via structural modulations, and to

efficiently do that we need to understand the structure-property correlation in details. For

this, we have to know the electronic structure and crystal structure of the material. Rare

earth nickelates belong to the family of 3d transition metal compounds with a perovskite

structure. In this thesis, we work with systems mainly having a perovskite structure or

perovskite related structure. So, we start by giving a brief description of the perovskite

structure and the common structural distortions that it can undergo.

1.1 Perovskite structure and the tolerance factor

Perovskite materials having a simple crystal structure has played an important role in

understanding the microscopic interactions leading to interesting electronic properties in

many compounds. Perovskite materials are materials with a crystal structure related to

the mineral Calcium titanate(CaTiO3) with general formula ABX3, where A and B are

cations and X is an anion. For example, in case of rare earth nickelates(RNiO3), a rare

earth atom R sits at the A-site, Ni sits at the B-site and the anion is oxygen.

If we consider the unit cell as a cube(for example in SrTiO3), then as shown in Figure

1.1(a), the B cation sits at the cube corners, the anions at the edge center positions

and the A cation at the body center position. The B cation has an octahedral coordi-

nation surrounded by 6 anions[see Figure 1.1(b)]. Together they form a corner sharing

octahedral network with the A cations sitting at the octahedral voids coordinated by 12

anions[Figure 1.1(c)]. The BX6 octahedra[Figure 1.1(b)] in perovskite materials act as

an important and fundamental functional unit to tune material properties [9]. The B-X

bond lengths(size and shape of the octahedra) and the B-X-B bond angles are the basic

structural parameters that can be varied to tune the electronic properties. For an ideal

cubic perovskite structure(SrTiO3), the B-X-B bond angles are 180o as shown in Figure
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Figure 1.1: (a) The unit cell of an ideal cubic perovskite structure where, the B cations sits at the cube
corners, anions at the edge center positions and the A cations at the body center position of the cube. (b)
Octahedral coordination of the B cation surrounded by 6 anions. (c) A perovskite structure visualized
as a corner shared network of BO6 octahedras with the A cation sitting at the octahedral voids.

1.2(c). However, most of the perovskite materials have distorted perovskite structure with

octahedral tilting and rotations, where the B-X-B bond angles deviate from 180o leading

to unit cells having lower symmetry.

Figure 1.2: Space filling model of a perovskite structure where the atoms are considered as spheres
touching each other, showing the relation between (a) the lattice parameter a and ionic radii rB, rX ;
(b) the lattice parameter a and ionic radii rA, rX . (c) The ideal cubic perovskite structure with B-X-B
bond angles equal to 180o. (d) Lower symmetry orthorhombic perovskite structure with octahedral tilts
showing the deviation of B-X-B bond angles from 180o. The orthorhombic unit cell is shown with the
black lines.



1.1. PEROVSKITE STRUCTURE AND THE TOLERANCE FACTOR 5

These structural distortions have been understood in terms of an empirical factor known

as the Goldschmidt tolerance factor (α) [10]. Considering the idea of dense ionic packing

where the ions are considered as solid spheres touching each other [see Figs. 1.2(a) and

(b)], the lattice parameter a of an ideal cubic perovskite is related to the ionic radii rA,

rB and rX by the equations.

a =
√
2(rA + rX) (1.1)

= 2(rB + rX) (1.2)

The ratio,

α =
(rA + rX)√
2(rB + rX)

(1.3)

is called the tolerance factor that gives an estimate of the propensity of octahedral ro-

tations in perovskites. For values of α in the range 0.9 - 1.0, one usually finds cubic

perovskites, whereas values of 0.80 - 0.89 due to a smaller A cation or larger B cation

predominantly leads to distorted perovskites with octahedral tilting [11]. This can be un-

derstood qualitatively considering basic electrostatic interactions. For example, a smaller

size of the A cation reduces the unit cell volume. This makes the B-X distances shorter,

leading to an increased Coulomb repulsion between electrons on B and those on X . This

increased Coulomb repulsion can be compensated by an octahedral tilting that prevents

further decrease in the B-X bond lengths and results in B-X-B angles to deviate from

180◦. This in turn makes the A-X distances shorter. Considering the effective ionic

radii(Shannon model [12]) of Sr2+, Ti4+ and O2− to be 1.44, 0.60 and 1.42 Å, for SrTiO3

having an ideal cubic structure, gives a value of α = 1.0. But in CaTiO3, Ca
2+ having

an effective ionic radii of 1.12 Å gives α = 0.88. This leads to octahedral tilting with an

orthorhombic unit cell as shown in Figure 1.2(d).

However, whether a reduction in unit cell volume would be accommodated entirely by the

B-X bond compression or octahedral tilting, depends on the relative compressibilities of

the BX6 and AX12 units. Combined experimental and theoretical study [13] on the well-

known perovskite CaSnO3, shows that similar compressibilities of the SnO6 and CaO12

units would result in a change of the Ca-O and Sn-O bond lengths with uniform pressure,

without any angular distortions. On the other hand almost rigid SnO6 and CaO12 units

shall lead to angular distortions dominantly. But experimental observations suggest that

a “rigid unit” approach is inappropriate, and a higher compressibility of the CaO12 unit
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compared to SnO6 makes the Sn-O-Sn bond angle change drastically with pressure from

the very beginning, compared to the Sn-O bond length.

Figure 1.3: (a) A larger atom at the A-site creates excessive internal pressure to break the octahedral
connectivity leading to anion deficiency in some of the octahedral units. (b) To conserve the ionic
coordination the anion deficient octahedra bends and becomes face shared with the next one. This leads
to chains of face shared octahedras along a particular direction separated by the A cations. This is called
a 2H perovskite structure. (c) 2H perovskite unit cell of BaMnO3 viewed along the c-axis.

On the other hand if α > 1 as a result of large A or a small B cation, then low dimensional

hexagonal variants of the perovskite structure forms. A larger size of the A cation can

give rise to an excessive internal pressure that can break the corner shared octahedral

network [see Figure 1.3(a)] leading to anion vacancies in some of the octahedra. Now

to conserve the ionic coordination, octahedra with fewer anions bend and become face

shared with the other one as shown in Figure 1.3(b). This leads to parallel chains of face

shared octahedras separated by the A cation. This structure is called a 2H perovskite

structure. For example BaMnO3 is predicted to adopt a 2H perovskite structure [14] with

α = 1.06 Å [see Figure 1.3(c)].

But we must remember that all transition metal compounds are not purely ionic, so for

transition metal compounds with a perovskite structure, the tolerance factor can only

give a rough estimate. By transition metal compounds we mean crystalline solids where

the unit cell must contain one or more transition metal atoms and one or more nonmetal

elements from group V IIA (O, S or Se), also called ligands. Other atoms may also be
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present, for example the rare earth atom(R = Lu to La) in the rare earth nickelates. But

they generally take part in structural stabilization without any direct contributions to

the electronic properties. One of the important properties of transition metal elements

is their possible multiple valence states. In an isolated atom the atomic shells defined

by quantum number n are filled one after another. But starting from n = 3, the filling

scheme changes [15]. After the 3s and 3p shells are occupied, 4s shell gets filled first

before 3d. After that the energy levels of the inner 3d shell starts to fill producing the 3d

transition metal series, from Sc to Cu and then the 4p states are occupied. Quite similar

thing happens for the 4d and 5d series. As 3d and 4s electrons lie close in energy, the

s electrons together with some of the inner shell d electrons can participate in bonding.

This leads to multiple valence of transition metal atoms in compounds. For example Ti

can have 2+, 3+, 4+ oxidation states. This is why transition metals can act as good

catalysts in a chemical reaction where it can easily give or take electrons to the reagent

depending on the nature of the reaction [16]. Multiple valences leads to many possible

electron configurations and as a result the bonding in transition metal compounds ranges

from ionic to covalent along with a wide range of possible crystal structure. For example

the compound NiO(Nickel(II) oxide) with Ni2+ has a rock salt structure and is strongly

ionic. Whereas rare earth nickelates(RNiO3) with Ni3+ have a perovskite structure and

the bonding is believed to be of mixed character [17]. When we focus on any transition

metal compound where the atom is now in a crystal structure, we also need to consider

the effect of the crystal structure on the transition metal atom. Now the symmetry of the

atom is determined by the local symmetry of the crystal structure and renormalization

of the isolated atomic energy levels takes place. In this context now let us consider the

effects and properties of the perovskite structure with a transition metal atom.

1.2 Transition metal in a perovskite structure

1.2.1 Octahedral crystal field splitting

When the transition metal atom is in a crystal, we also need to consider the effect of

the crystal structure on the transition metal atom. An isolated transition metal atom

has a spherical symmetry and all the five d orbitals are energetically degenerate. Now,

if we consider a negatively charged sphere with uniform charge distribution around a

transition metal atom, the energy of the d orbitals increases due to coulomb repulsion

between the electrons in the d orbitals and negative charge on the surrounding sphere.

But they still remain energetically degenerate as a result of the spherical symmetry. Now
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in a crystal structure, this spherical symmetry is lost and the symmetry is determined by

the local symmetry of the crystal structure. For example, as shown in Figure 1.1(b), for

a perovskite structure the transition metal atom is surrounded by six negatively charged

anions/ligands(X) forming an octahedron. Their effect on the transition metal atom can

be understood using crystal field theory, a model to understand the effect of the electric

field produced by the surrounding anions on the transition metal atom. In this model, the

ligands are replaced by negative point charges and the interaction between the electrons

on the transition metal atom and ligand is considered to be purely electrostatic.

Figure 1.4: Shape and orientation of the five d orbitals belonging to (a) eg manifold and (b) t2g manifold
under octahedral crystal field. Inset : octahedral crystal field splitting of the five degenerate d orbitals
into lower energy t2g and higher energy eg levels.

Figure 1.4 shows a schematic representation of the charge density distribution correspond-

ing to the five d orbitals of a transition metal atom. Considering an ideal cubic perovskite

with lattice constant a, all the orbitals are surrounded by six point charges(shown as red

dots representing the ligands) located at +a
2
î, −a

2
î, +a

2
ĵ, −a

2
ĵ, +a

2
k̂ and −a

2
k̂ respectively.

From the schematic it is clear that all the d orbitals will not interact with the point

charges equally. d3z2−r2(later we use dz2 to represent d3z2−r2 for simplicity) and dx2−y2

have lobes along the axis and pointed directly towards the ligands, hence experiencing

strong coulomb repulsion[Figure 1.4(a)]. In contrast dxy, dyz and dxz have their charge
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densities distributed between the point charges resulting in a weaker coulomb repulsion.

As a result the energy of dz2 and dx2−y2 becomes higher compared to dxy, dyz and dxz.

This lifts the degeneracy of the five d orbitals into two groups: Together, the two degen-

erate dz2 and dx2−y2 orbitals with higher energy are called eg and three degenerate dxy, dyz

and dxz orbitals with lower energy are called t2g orbitals respectively. Such nomenclature

comes from group theory and the corresponding splitting between them(∆CF ) is called

the crystal field splitting [15][see inset of Figure 1.4]. If we consider the center of gravity

of these levels to remain unchanged and taken as zero, then the t2g states are stabilized by

an energy Et2g = −2
5
∆CF and the eg states are destabilized by an energy Eeg = +3

5
∆CF .

The splitting of the d levels depends on the coordination of the transition metal atom.

If the coordination deviates from a regular octahedron then the splitting shall change.

For example, in case of tetrahedral coordination, the eg states become lower in energy

compared to the t2g states with a lower splitting energy. We are not going to discuss

those in detail here, but the crystal field splitting makes the atomic descriptions invalid

in any crystalline system. In the next part, we discuss how crystal field splitting affects

the filling of the d orbitals compared to an isolated atom.

1.2.2 Filling of the d orbitals under crystal field

As a result of a crystal field splitting, the order of filling of the d orbitals changes compared

to what we have for an isolated atom. In an isolated atom, filling of the five degenerate d

orbitals follow certain rules called the Hund’s rule [18]. The most important of them is the

first rule which states that, for any number of electrons the filling shall be in such a way as

to maximize the total spin(S) of the system. For example, if there are four electrons, then

four d orbitals shall be singly occupied with parallel spin as shown Figure 1.5(a). Which

four of the five d orbitals shall be occupied is specified by the second Hund’s rule. The

four d orbitals that maximize the total angular momentum(L) shall be occupied. This

gives a total spin |S| = 2. So, according to first Hund’s rule, double occupancy of the

orbitals cannot start from the beginning as shown in Figure 1.5(b) which shall give |S| = 0.

The microscopic origin of this rule is the electron-electron coulomb repulsion between two

electrons in an atom. Occupying different orbitals reduces the overlap between electronic

charge as the spatial extent of their wave functions are different. This reduces the Coulomb

repulsion. In addition to this, two electrons on different orbitals minimizes screening effect

leading to stronger attraction between the nucleus and electrons. Again as electrons are

fermions, according to Pauli principle electrons with parallel spins avoid each other and
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as a result Coulomb repulsion can be further reduced. This decreases the total energy of

the spin system and favors parallel spin arrangement of single occupied orbitals.

Figure 1.5: (a) The filling of 5 degenerate d orbitals with four electrons according to Hund’s rule
maximizing total spin S and total angular momentum L. (b) Filling with a violation of Hund’s rule
showing double occupancy of the orbitals. (c) A high spin state following Hund’s rule for a small crystal
field effect. (d) A low spin state for a large crystal field splitting where Hund’s rule is no longer valid.

A quantum mechanical treatment of the electron-electron interaction within the same

shell of a single atom, allow us to write the interaction energy in terms of an effective spin

Hamiltonian given as [18] :

Hexch = −Jαβ
∑

α6=β

(2Sα.Sβ +
1

2
) + constant (1.4)

Hexch is called the exchange Hamiltonian(Please note that this is not the Heisenberg

Hamiltonian that represents inter-atomic exchange). Sα and Sβ indicates the spin of the

electrons in orbitals α and β respectively which can either be +1/2 or −1/2. Jαβ is

the intra-atomic Hund’s exchange interaction energy between two electrons in orbitals α

and β. Exchange energy is a quantum mechanical manifestation of the electron-electron

Coulomb repulsion having no classical counterpart(see section 2.2 of chapter 2 for details).

Within the same atom and same atomic shell, we can treat Jαβ to be identical for any

pair of orbitals and is denoted as JH . The above Hamiltonian simply says that each pair

of d electrons with parallel spins gives a contribution of −JH to the total energy of the

spin system. For example, the spin arrangements shown in Figure 1.5(a) and (b) gives a
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Hund’s energy of −6JH and −2JH respectively, making the first configuration to dominate

over the other. Typical values of JH for transition metals are JH ∼ 0.8 - 0.9 eV for 3d,

JH ∼ 0.6 - 0.7 eV for 4d, and JH ∼ 0.5 eV for 5d elements. This is because JH depends

on higher moments of Coulomb interactions (F2 + F4) [19], which decreases because the

orbitals become more delocalized as we go from 3d to 4d to 5d. However screening effects

are larger in 4d, 5d transition metal compounds and hence their values further reduces

when they form compounds.

The rules for filling the isolated atomic levels change when there is crystal field splitting.

For a transition metal atom in an octahedral environment, the three lowest energy t2g

levels are occupied first with 3 electrons having parallel spins following first Hund’s rule.

But for the fourth electron, there are two possibilities. It can either occupy one of the

degenerate eg levels as shown in Figure 1.5(c), or it can occupy one of the preoccupied t2g

level with an opposite spin as shown in Figure 1.5(d). For the first case[Figure 1.5(c)], the

spin of the eg electron becomes parallel with the spin of the 3 t2g electrons. This gives a

Hund’s energy gain of −3JH , but to occupy the higher energy eg levels there is an energy

cost of ∆CF . In the second case[Figure 1.5(d)] the electron is in the t2g manifold, so there

is no cost of ∆CF but we lose the Hund’s energy gain of −3JH . Now if we assume that the

total electron-electron Coulomb repulsion energy between two electrons is independent of

the d orbitals occupied, then there is a competition between JH and ∆CF . If the crystal

field splitting is not too large and,

∆CF < 3JH (1.5)

then the first state is favored where the total spin is maximum, |S| = 2. This is called a

high spin state. But if the crystal field splitting is large enough to satisfy the criterion,

∆CF > 3JH (1.6)

then the fourth electron occupies one of the t2g levels and the second state with |S| = 1

is favored. Such spin states are called low spin states.

As we go from 3d to 4d to 5d, the value of JH decreases, whereas the crystal field,

splitting(∆CF ) increases due to larger spread of the 4d and 5d orbitals compared to 3d

orbitals. So, in general for 3d transition metal perovskites a high spin state and for 4d

and 5d compounds a low spin state shall be favored. For example, 3d ion Mn3+(d4) is

usually in the high spin state(t32ge
1
g) with |S| = 2[Figure 1.5(c)], whereas it’s 4d counter-

part Ru3+(d4) is typically in the low spin state(t42ge
0
g) with |S| = 1 [15] [Figure 1.5(d)].
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However, exceptions are there because the crystal field splitting directly depends on the

transition metal-ligand interaction, which is controlled by the crystal structure and elec-

tronic structure of the system. For example, Cu2+(d9) in perovskite KCuF3 is in a low

spin state(t62ge
3
g) due to large ∆CF as a result of larger spread of the F p states.

1.2.3 Octahedral distortion : Jahn-Teller effect

Till now we have explained the origin of octahedral rotations and effect of the octahedral

crystal field on the transition metal atom/ion sitting at the B-site. In the above cases,

we have considered ideal regular octahedra with six equal B-X bond lengths where the

transition metal atom have a cubic symmetry. However octahedral distortions reduce the

cubic symmetry further and can act as a perturbation on the t2g and eg levels. One of

the most important types of octahedral distortion in perovskites is the Jahn-Teller dis-

tortion. These distortions occur due to the Jahn-Teller effect, which was first observed

in nonlinear molecules. The Jahn-Teller theorem [20] essentially states that, a nonlinear

molecule in an electronically degenerate state must undergo a structural distortions to

remove the degeneracy and lower the energy of the system. Any localized system with

a degenerate electron configuration lowers energy via such structural distortions and re-

moves the degeneracy. Presence of a transition metal ion at the center of the octahedra

with a degenerate electron configuration makes it Jahn-Teller active and the octahedra

distort to remove the degeneracy. By a degenerate electron configuration, we mean that

there is more than one way to fill the d orbitals. For example, Mn3+(d4) in the high spin

state(t32ge
1
g) has a single electron in the eg levels[Figure 1.5(c)]. This single electron can

occupy either the dz2 or dx2−y2 giving two degenerate energy configurations t32gd
1
z2d

0
x2−y2

and t32gd
1
x2−y2d

0
z2. This makes Mn3+ a Jahn-Teller active ion. Other examples are Ni3+(d7)

in a low spin state(t62ge
1
g), Cu

2+(d9) in a low spin state(t62ge
3
g) etc. An elongation[inset of

Figure 1.6(b)] or compression[inset of Figure 1.6(c)] of the regular octahedra along one of

the octahedral axis further lifts the degeneracy within the t2g and eg manifold, killing the

possibility of any degenerate energy configuration.

This can be qualitatively understood from the knowledge of the crystal field split-

ting. Considering the octahedral volume to remain constant, an elongation in the z-

direction[inset of Figure 1.6(b)] increases the transition metal-ligand distance in that di-

rection, whereas the transition metal-ligand distance along the x and y-direction decreases.

This lowers the energy of the dz2 orbital which has dominant electron distribution along

the z-direction[see Figure 1.4(a)]. On the other hand energy of dx2−y2 increases as it has

charge density along the x and y-directions. A quite similar thing happens to the t2g
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Figure 1.6: (a) Splitting of the five degenerate d orbitals into t2g and eg manifold for a regular BX6

octahedral environment shown in the inset. (b) Splitting of the energy levels within the t2g and eg
manifold for an elongation of the octahedra along the z-direction. (c) Splitting of the energy levels within
the t2g and eg manifold for a compression of the octahedra along the z-direction.

states. As dxz and dyz have a component along the z-direction, so they are stabilized in

energy. Whereas energy of the dxy orbital lying entirely in the xy-plane increases. How-

ever, due to the smaller interaction of the t2g orbitals with the ligands, changes in the

t2g manifold is rather small. For an octahedral compression in the z-direction the same

arguments follow leading to an energy level splitting shown in Figure 1.6(c).

As an example, perovskite KCuF3 contains a Jahn-Teller active ion Cu2+ with two possible

electron distribution t62gd
2
z2d

1
x2−y2 and t62gd

2
x2−y2d

1
z2 . Hence the CuF6 octahedra undergoes

Jahn-Teller distortion in the form of elongation along one of the pseudo cubic directions

[21]. The tetragonal unit cell of KCuF3 projected along the c-axis is shown in Figure

1.7(a). It consists two layers of CuF6 octahedra along the c-axis, which are all corner

shared in the ab plane and out of plane direction. The Jahn-Teller distortion results in an

elongation of the octahedra either along the pseudocubic x or y-axis[shown by dotted lines

in Figure 1.7(a)]. Distortion occurs in a cooperative manner such that d3x2−r2 and d3y2−r2



14 CHAPTER 1. INTRODUCTION

Figure 1.7: The crystal structure of KCuF3 viewed along the c-axis([001] direction) with (a) out of
phase rotations of distorted octahedra between layers along the c-axis; (b) a [001] layer showing the
cooperative orbital ordering. Pseudocubic x or y-axis are shown by dotted lines in panel (a).

orbitals in the ab-plane are stabilized and occupied in an alternative manner [21][Figure

1.7(b)].

The Jahn-Teller effect itself is an example of the correlation between structural distortion

and electronic state of the transition metal atom. At this point, we must know that

an orbital degeneracy does not always lead to a Jahn-Teller distortion. The occurrence

of such a distortion to remove orbital degeneracy is easy to understand considering the

local electrostatic effects in an isolated octahedra. But in a crystalline environment where

atomic states form bands, the fate of the Jahn-Teller distortion depends on the electronic

structure of the system. For example, Jahn-Teller distortion is both temperature and

pressure sensitive, and it is generally suppressed at higher temperatures and pressures.

This happens due to temperature and pressure-induced changes in the electronic structure

of the system. Even at low temperatures and normal pressure, a Jahn-Teller distortion

does not occur for wide bandwidth systems like the rare earth nickelates, where Ni (Ni3+)

is Jahn-Teller active [22]. So, for a real material, the knowledge of the electronic structure

is also needed to understand the origin of any structural distortion. In the next section,

we discuss the electronic structure of 3d transition metal compounds.
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1.3 Electronic structure of 3d Transition metal com-

pounds

The electronic structure of 3d transition metal compounds can be described in terms of

three essential parameters [23].

1. The on-site electron-electron Coulomb repulsion energy U within the transition

metal 3d manifold.

2. The charge transfer energy∆ to transfer an electron from a band like ligand(anionic)

p state to an empty transition metal d orbital.

3. The transition metal 3d − ligand 2p hopping interaction strength tpd, which in turn

determines the bandwidth W of the system.

1.3.1 On-site coulomb repulsion energy U and Hubbard model

Origin of the three parameters mentioned above is an effort to understand the ground

state electronic structure of some transition metal compounds where band theory fails.

The basic prediction of band theory is that, if there are even number of electrons per unit

cell then the system could be either metal or insulator. But if there are an odd number of

electrons per unit cell, then it must be a metal [24]. But this prediction fails in a number

of cases, for example in CoO. CoO has a rock salt structure with one Co and one O atom

in the unit cell. Co with an electronic configuration 3d74s2 and O with 2s22p4 results in

an odd number(15) of electrons per unit cell. So according to band theory, it should be

a metal, but experimentally it has been found to be an insulator [24, 25]. However the

low temperature ground state structure of CoO is an antiferromagnetic(AFM) insulator.

So, if we take the Co lattice and subdivide it into two magnetic sublattices so that one

is with up-spin and the other one with down-spin, then the magnetic supercell is twice

the chemical supercell and now there are even number of electrons [26]. Hence one can

explain the low temperature AFM insulating state. But at sufficiently high temperatures

above the Neel temperature the AFM ordering vanishes and the paramagnetic insulating

state again has the chemical unit cell with odd number of electrons where band theory

fails.

According to Mott [27–29], the reason of this failure is that, simple band theory do

not takes into account the electron-electron Coulomb interactions. When we treat the

electron-electron interaction quantum mechanically, the energy has a contribution from
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Figure 1.8: (a) A model for one-dimensional chain of atoms with a lattice constant a. There is a single
orbital per atom that can be occupied by two electrons with opposite spins. No magnetic ordering of
the electron spins are considered. (b) A non-interacting picture where electrons can hop from one site to
other with a transition probability t. (c) Due to electron-electron correlation the gain from hopping(t) is
compensated by the correlation energy U at the doubly occupied sites.

classical Coulomb energy, as well as quantum contributions such as an exchange(see chap-

ter 2 for details). Together it is called electron-electron correlation, denoted by U. This

can localize the electrons leading to an insulating ground state. A qualitative under-

standing of the importance of electron correlation follows from a simple model of a one-

dimensional(1D) atomic chain, with a single electronic orbital per atom. As shown in

Figure 1.8(a), we consider a single electron per atomic site without any spin correlation

i.e. the spins of the electrons are random. Now if the electrons are non-interacting, then

the down-spin electron at the (I-1)th site can easily hop to the Ith site having an up-spin

electron with a transition probability t[see Figure 1.8(b)]. Due to such hopping, we have

a single band with bandwidth W = 2zt(where z is the number of nearest neighbors, z

= 2 in 1D chain, z = 4 in square lattice, etc.) [30]. The band becomes full when two

electrons, one with spin-up and the other with spin-down, occupy each site. But here

single electron per site(unit cell) leads to a metallic state with a half-filled band[Figure

1.9(a)]. This is the non-interacting picture, but if we consider the electron-electron inter-

action, then the energy gain(t) due to hopping process as shown in Figure 1.8(b), will be

compensated by on-site Coulomb correlation energy U at the doubly occupied Ith site[see

Figure 1.8(c)]. According to Mott, this would split the single band in two bands. The

lower band is formed from electrons that occupied an empty site(with energy ǫ) and the
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upper one from electrons that occupies a site already taken by another electron(with en-

ergy ǫ + U)[see Figure 1.8(c)]. Now with one electron per site, the lower band would be

fully occupied, and if there is any gap between the two bands the system would be an

insulator.

Hubbard implemented the Mott physics in a simple model known as the Hubbard model

[31, 32], which is given as,

H = −t
∑

〈ij〉σ

(c†iσcjσ +H.C.) +U
∑

i

ni↑ni↓ (1.7)

Where 〈ij〉 indicates sum over i and j such that for each value of i, j is the nearest

neighbor sites of the ith site. c†iσcjσ indicates hopping of an electron with spin σ from

the jth site to the nearest neighbor ith site. ni↑ and ni↓ gives the number of up-spin and

down-spin electrons at the ith site respectively.

Figure 1.9: (a) A half filled band with band width W due to single electrons per site of a 1D chain
of atoms. (b) The density of states corresponding to the half filled band. (c) Splitting of the half filled
band into Upper and Lower Hubbard band as a result of electron-electron correlation.

For U = 0, the model reduces to a simple nearest neighbor tight-binding model giving

rise to a single band[Figure 1.9(a) and (b)]. The second term gives the electron-electron

correlation between the up and down-spin electron at the ith site. For a critical value of

U, the half-filled band splits into two bands with a gap between them[see Figure 1.9(c)].

The fully occupied and unoccupied bands are called lower and upper Hubbard bands.

Such a correlation driven insulating state is called a Mott insulator and the effective gap

is ∼ (U − Weff ) called Mott-Hubbard gap which is controlled by the value of U and

Weff = zt, the effective d bandwidth.
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1.3.2 Charge transfer energy ∆

The Mott-Hubbard picture of the electronic structure explains the insulating state of

CuO, NiO as a result of gap opening due to coulomb correlation U. And the band gap

value is determined by the strength of U. As U is an intra-atomic parameter, we expect

that the band gap shall not vary significantly in the compounds containing the same

transition metal atom. But it was observed that band gap strongly depends on the type

of ligand in the compounds of late transition metals like Co, Ni, Cu [23,33]. For example,

band gap decreases from 4.7 to 3.5 to 1.8 eV in NiCl2, NiBr2 and NiI2 respectively [33].

This suggests that along with the transition metal d states, ligand p states also play an

important role in determining the electronic structure.

Figure 1.10: (a) Mott-Hubbard insulator for U <∆ where the gap is between two d bands. (b) Charge
transfer insulator for U >∆ where the gap is between the ligand p band and the upper Hubbard band.
(c) Expected band overlap and a metallic state in the -ve ∆ region(upper panel) and opening of a gap
due to strong p− d hopping(lower panel)

According to Zaanen, Sawatzky, and Allen (ZSA) [34], for such transition metal com-

pounds where strong hybridization effect of the d orbital and ligand p orbital is present,

we need to consider two other relevant parameters. The charge transfer energy ∆ to
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transfer an electron from a band like ligand(anionic) p state to an empty transition metal

d orbital and the transition metal 3d − ligand 2p hopping interaction strength tpd, which

is mainly responsible in determining the transition metal d bandwidth. Now if we con-

sider that the ligand p bandwidth is mainly due to p − p hopping then, in the limit of

U < ∆, ligand p band lies below the lower Hubbard band and the electronic structure

follows Mott-Hubbard picture[Figure 1.10(a)]. But in the limit U > ∆, ligand p band

lies in between the lower and upper Hubbard band[Figure 1.10(b)]. And if the system is

insulating then, the gap is between the filed oxygen p band and empty upper Hubbard

band. Such insulators are called Charge transfer insulators and the gap is controlled by

the value of ∆. The reason for such nomenclature is that here charge transport is possible

due to the lowest energy excitation that transfers an O p electron to the transition metal

d orbital.

1.3.3 The ZSA phase diagram

Considering these three parameters Zaanen, Sawatzky, and Allen presented a phase dia-

gram pointing out different metal and insulating regions for strongly correlated electron

systems in the U/tpd − ∆
′

/tpd space. This is shown in Figure 1.11(a). ∆
′

is the effective

charge transfer energy defined between the band edges as shown in Figure 1.10(b).

For, U <∆ we are in the Mott-Hubbard region[Figure 1.10(a)]. Now, U > Weff ensures

an insulating state which is the Mott-Hubbard insulator. LaVO3, LaTiO3, V2O3, Ti2O3

etc, are examples of such insulators [23]. But for U < Weff , the upper and lower Hubbard

bands overlaps resulting in a metallic ground state. Such metals are called d band metals.

TiO and VO are compounds belonging to this class [23].

On the other hand for U > ∆, we are in the charge transfer region[Figure 1.10(b)]. If

∆ is greater than a critical value ∆C such that ∆
′

is positive then we get an insulating

ground state, which is the charge transfer insulators. CuO is an example of charge transfer

insulator [23]. But for ∆ < ∆
′

, O p band overlaps with the upper Hubbard band giving

rise to a metallic state called p-type metal. CuS, NiSe, LaNiO3 are examples of such

metals [23].

Later, based on multiband Hubbard model calculations [23,35,36], it was shown that for

negative values of ∆
′

we can still have an insulating state over a region for high values of

U. Such insulating state arises due to strong covalency effects between transition metal

d and ligand p states and is termed as a covalent insulator. This is shown in the modified

ZSA phase diagram[Figure 1.11(b)] between the p-type metal and charge transfer insulator

regions. For negative values of ∆
′

system would be metallic without considering the p−d
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Figure 1.11: (a)The ZSA phase diagram (b) Modified ZSA phase diagram showing the covalent insu-
lating region.

hybridization(tpd) as a result of band overlap. This is shown in the upper panel of Figure

1.10(c). But a large value of tpd mix the d and p states, pushing them energetically apart

to form a nonzero band gap, similar to the case of bonding-antibonding splitting formed

in molecular orbital theory [8][see lower panel of Figure 1.10(c)]. Increasing the formal

valence of a transition metal ion has the primary effect of lowering ∆ and increasing tpd

that favors a covalent insulator state. The rare earth nickelates (RNiO3) are the example

of such compounds.

Now after knowing the details of the perovskite structure and basic parameters to describe

the electronic structure of transition metal compounds, let us look into some example of

structure-property correlation in rare earth nickelates.

1.4 Properties of Rare earth Nickelates

The rare earth nickelates(RNiO3) shows fascinating electronic and magnetic properties

as a result of their complex electronic structure and flexibility of the perovskite structure

to adopt internal and external changes [34, 37]. One of the interesting phenomena that

we are going to discuss is the temperature driven metal to insulator transition. All
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members of the RNiO3 series(except LaNiO3 that remains metallic at all temperatures)

shows a sharp metal to insulator transition below a certain temperature(T
MIT

). This can

be observed as a sharp rise in the resistivity below T
MIT

as shown in Figure 1.12(a) for

SmNiO3 thin films grown on LaAlO3 substrate [1,38]. The high temperature state above

T
MIT

is metallic with an orthorhombic space group Pbnm and below T
MIT

they become

insulating/semiconducting [1]. The metal to insulator transition temperature for all the

rare earth nickelates is shown in Figure 1.12(b). We can see that as we go from Pr to

Lu, T
MIT

gradually increases. At the same time, the evolution of the tolerance factor(α,

along the x-axis) going from Pr to Lu, suggests that T
MIT

and structure of the systems

are correlated.

Figure 1.12: (a) Resistivity vs. Temperature plot showing the metal to insulator transition below
∼ 400 K in SmNiO3 thin films(10 nm)[Figure taken from Ref. [38]] (b) Metal-insulator and magnetic
transitions as a function of the tolerance factor α for the rare earth nickelates[Figure taken from Ref. [1]]
(c) Straightening the Ni-O-Ni bond angle (by increasing rare earth-radius) increases the orbital overlap
and stabilizes the metallic state.
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The low temperature state of rare earth nickelates has been characterized as charge trans-

fer insulators [23, 34, 39, 40], with the transition to a metallic state occurring due to the

collapse of the charge transfer gap between the oxygen p valence band and Ni d conduction

band[see Figure 1.10(b)]. As discussed before, crystal structure of RNiO3 systems consist

of corner shared NiO6 octahedra with the rare earth atom(R) sitting inside the octahedral

cavity at the A-site. The octahedra are tilted showing a GdFeO3 type distortion with a

deviation of the Ni-O-Ni bond-angle from 180o. Now as we go from Pr to Lu the ionic

radii gradually decrease due to an increase in the atomic number Z. As a result, the value

of the tolerance factor given by Equation (1.8) decreases [40].

α =
(r

R
+ r

O
)√

2(r
Ni

+ r
O
)

(1.8)

This reduction in the tolerance factor is mainly accommodated by an increased buckling of

the NiO6 octahedral network [1, 40]. A larger compressibility of the RO12 unit compared

to the NiO6 unit results in a faster shrinking of the R-O distances compared to Ni-O

distances. This results in an octahedral tilting with a decreased unit cell volume. As

a result of increased buckling, the Ni-O-Ni bond angle deviates more and more from

180o. As shown in Figure 1.12(c), this decreases the orbital overlap between the Ni d

and O p states. As a result, the bandwidth of the conduction band and valence band

decreases due to decrease in hopping strength tpd. This, in turn, increases the band

gap of the system i.e. favors the insulating state over the metallic one. This explains

the increasing T
MIT

with decreased ionic radii of the R atom. For PrNiO3, the average

Ni-O-Ni bond angle is ∼158.5o with a T
MIT

∼ 135K. Whereas for LuNiO3, the average

Ni-O-Ni bond angle reduces to ∼144.5o increasing the T
MIT

to 599K. It has been reported

that T
MIT

can be tuned continuously across this entire temperature range by mixing two

different nickelates in the right proportion [1,41]. For example, metal-insulator transition

for Nd0.45Sm0.55NiO3 takes place at room temperature.

Now along with the metal to insulator transition, the rare earth nickelates also shows a

transition from a paramagnetic insulator to an anti-ferromagnetic insulator state at the

temperature T
Neel

≤ T
MIT

. One of the proposed anti-ferromagnetic state is characterized

by an (↑↑↓↓) order of the Ni moments along the three pseudocubic axis [42,43]. As shown

in Figure 1.12(b), for R = Nd and Pr the T
Neel

and T
MIT

coincides, but as tolerance factor

reduces further, the T
Neel

and T
MIT

separates from one another. This, suggests that an

anti-ferromagnetic ordering of the Ni moments cannot be responsible for the insulating

state [26] and can be ignored as a low-temperature phenomenon. The insulating state is

a result of electron-electron correlation coupled with structural distortions [22, 44–46]. If
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we consider a complete ionic picture of RNiO3(R
3+, Ni3+, O2−

3 ), then Ni3+(d7) in the low

spin state(t62ge
1
g) would be Jahn-Teller active due to orbital degeneracy in the eg manifold

and metallic due to a half-filled conduction band arising from the eg states. Now the

degeneracy can be removed via a Jahn-Teller distortion and may lead to an insulating

state depending on the bandwidth of the system. So, for RNiO3 we expect a Jahn-Teller

distortion in the low temperature insulating state. Though structural analysis suggested

such distortion for nickelates with small rare earth atoms, but such distortion was not

observed for NdNiO3 and PrNiO3 [47] which are wide band width systems. For NdNiO3

it was found that the insulating state is accompanied by a breathing mode distortion with

two inequivalent NiO6 octahedra having slightly different volume [48, 49].

1.4.1 Effect of pressure and strain

As described above, we see that there is a strong correlation between the Ni-O-Ni bond

angle(θ) and the metal to insulator transition temperature T
MIT

. Hence we can control

the electronic structure and transition temperature by controlling the bond angle θ, and

this can be done with external pressure or epitaxial strain.

External hydrostatic pressure reduces the unit cell volume and hence the Ni-O and R-O

bond length decrease. In response to external pressure, the compressibility of the NiO6

unit is much higher than the RO12 unit. This results in a faster shrinking of the Ni-

O distances compared to R-O distances [50, 51]. A faster shrinking of the Ni-O bond

lengths in-turn results in a straightening of the bond angle θ reducing the octahedral

distortions and making the system more and more itinerant. This reduces T
MIT

favoring

a metallic phase [50–53]. For example, it has been reported that for PrNiO3, the metal-

insulator transition gets suppressed for pressures above 13-14 kbar [50, 53]. However

the temperature dependence of the resistivity in the high pressure metallic phase shows

non-Fermi liquid behavior [53].

Analogous to external pressure, thin films grown under compressive strain are also ex-

pected to reduce octahedral distortions and decrease the T
MIT

. This has been observed

in epitaxial films of NdNiO3 grown under compressive strain [54–56]. Now, a reduction of

T
MIT

due to compressive strain simply suggests that T
MIT

shall increase as a result of ten-

sile strain. However experimental results show the opposite picture, instead of increasing,

T
MIT

also gets decreased under tensile strain. For example NdNiO3 thin films grown on

NdGaO3(∼ 1.3% tensile strain) shows a strong variation in the T
MIT

as a function of film

thickness. As shown in Figure 1.13, with increasing film thickness the strain is gradually

relaxed and T
MIT

approaches the bulk value ∼ 200 K [57,58]. But in the ultra-thin limit
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Figure 1.13: Normalized sheet resistance as a function of temperature for NdNiO3 films of different
thickness grown epitaxially on NdGaO3 single crystal substrates (tensile lattice mismatch of 1.3%). Inset:
evolution of T

MIT
(here T

MIT
= T

MI
) as a function of film thickness. Epitaxial strain stabilizes the

metallic phase and depresses the metal-insulator transition; as the strain is relaxed, the bulk behaviour
is progressively recovered.[Figure taken from Ref. [1]]

where the effect of strain is maximum, we see a reduced T
MIT

∼ 150 K. Such reduction

of T
MIT

can be explained by considering the tensile strain to be analogous to internal

pressure. An increase in the size of the rare earth atom can be thought to producing

internal pressure and increasing the R-O distance. This results in a straighter Ni-O-Ni

bond angle θ. Similarly, a tensile strain also reduces octahedral distortions as a result

of increasing R-O distances and hence reducing T
MIT

. So, for the rare earth nickelates,

we must remember that the fundamental NiO6 structural units behave differently under

internal and external changes.

The metal-insulator transition in the rare earth nickelates is coincident with a crystal dis-

tortion, where the insulating state is characterized by a two-sublattice symmetry breaking,

with Ni on one sublattice having a decreased mean Ni - O bond length and the Ni on

the other having an increased mean Ni - O bond length, defining a bond disproportiona-

tion/breathing mode distortion(BD) [44, 49, 59, 60]. This state is sometimes also referred

to as “charge ordered(CO)” state. There is a debate in explaining the simultaneous oc-
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currence of insulating phase with a bond disproportionation. D.I.Khomskii et al. [61]

explains the insulating state in terms of charge disproportionation, where an electron is

transferred from a Ni site to the nearest neighbor(n.n) Ni. This confirms an insulating

state and leads to bond disproportionation as a result of dissimilar charges on two different

Ni sites. On the other hand, there are claims [62,63] that there is actually no charge order-

ing on the Ni sites. All Ni atoms are equally occupied and there are holes on the oxygen

network. The bond disproportionation is a result of asymmetric coupling of the oxygen

holes with one of the Ni eg electrons forming a singlet state. In the third chapter of this

thesis using density functional theory(DFT) and model Hamiltonian approach [64], we

show that occurrence of the insulating state with bond disproportionation in Neodymium

nickelate(NdNiO3) is intimately related to a negative value of the effective charge transfer

energy(a negative value of ∆′). BD occurs when the Ni d band just enters the oxygen

p band and there are holes on the oxygen. For positive values of ∆′ system becomes

metallic with absence of a BD. We also calculate the effective charge transfer energy ∆′

for all the rare earth nickelates. For R = Lu to Pr the values of ∆′ lie in the range of -0.41

to -0.27 eV indicating a situation where the Ni d band just enters the oxygen p band. As

a result the ground state(GS) of the compounds are insulating with BD. For LaNiO3, the

value of ∆′ is ∼ -0.62 eV and the GS is metallic without any BD. So, from here conclude

that a negative value of delta is necessary for BD to occur, however there is a critical

value beyond which the itinerant limit is reached. There will be larger band overlap and

system becomes metallic suppressing the MIT. Values of ∆′ in the range of -0.41 to -0.27

leads to an insulating GS with a small variation in the band gap values. In the insulating

state, main role in controlling the band gap is played by the bandwidth(W). As we go

from Lu to Pr the ionic radii of the rare earth atom increases and the bandwidth of the

system also increases due to increased hybridization between the Ni d and O p states,

this in turn drives the system more towards the itinerant limit and there shall be a sys-

tematic decrease in the metal to insulator transition temperature(TMIT ), in agreement

with experimental observations as reported in earlier works [40, 65, 66]. From here we

move to hybrid perovskites where at the A-site there is an organic molecule, which plays

a complex role in determining the structure and hence electronic properties. So, in the

next section we now discuss the general structural properties of a hybrid perovskite and

how the ideas of structural distortions gets modified compared to the well known rules

that are applicable in inorganic perovskites.
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1.5 Octahedral tilting in Hybrid perovskites

In the previous section, we discussed the role of BO6 octahedra as an important functional

unit to control the electronic properties of perovskite nickelates. The B-O bond lengths

and the B-O-B bond angles are strongly correlated with the electronic structure of the

system. As discussed before, changes in the B-O-B bond angle occurs due to structural

distortions that have been understood in terms of the Goldschmidt tolerance factor[see

section 1.1]. The tolerance factor has emerged as an important tool which can be used

to determine whether a system shows a tendency to tilt or not. Such a concept has

existed for isolated atoms occupying the A-site and has been successful in explaining var-

ious experimental trends. But the tolerance factor approach becomes difficult to predict

octahedral distortions when there is a molecule sitting at the A-site. Material systems

consisting of organic and inorganic parts are called hybrid systems that offer an important

opportunity to combine useful properties from these two chemical realms within a single

molecular scale composite [67]. In hybrids, the organic molecules are generally sheltered

inside the inorganic cage. In case of hybrid perovskites, an organic molecule sits at the A-

site within the octahedral cavity. For example, Figure 1.14(a) shows a Methylammonium

(CH3NH3)
+ or MA molecule sitting inside the inorganic cage formed by the B cation

and X anions of a perovskite. The inorganic octahedral network is generally formed by

the Group 14 elements like Ge, Sn, and Pb, sitting at the B-site together with a halo-

gen Cl, Br or I as an anion. Hybrid perovskites with interesting chemical and structural

properties [67–71] are becoming popular day by day, mainly for their use as a solar cell

material.

Figure 1.14: (a) A typical hybrid perovskite structure where a Methylammonium(MA) molecule is
sitting at the A-site, inside the inorganic cage formed by B cation and anions. (b) A schematic repre-
sentation of the structure of Methylammonium(MA)[upper panel] and Ethylammonium(EA)[lower panel]
molecules.
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Other organic molecules that can form hybrid perovskites are Formamidinium or FA,

Ethylammonium or EA etc. The structure and components of the MA and EA molecules

are shown in Figure 1.14(b) for clarity. Hence in contrast to inorganic perovskites where

one had an isolated atom which could largely be approximated as a sphere, in the present

case, one has an asymmetric cylindrical object occupying the A-site. Moreover, now there

are hydrogen atoms associated with the molecule which can make hydrogen bonding with

the anions. These additional factors make it difficult to predict the structural properties

of such systems based on the concepts we have for inorganic perovskites.

Here we give a brief description of how the tolerance factor approach has been generalized

for hybrid perovskites and the role of hydrogen bonding between the molecule and the

anions in determining the structural distortions.

1.5.1 Generalized tolerance factor

The problem in determining the tolerance factor for such systems given by Equation (1.9),

lies in estimating the ionic radii(rOM) of the anisotropic organic molecules(OM). The

problem of estimating effective ionic radii for the organic molecule has been addressed in

the past. For example, a set of thermochemical radii for molecular anions was proposed

by Kapustinskii and Yatsimirskii around 1940 [72]. In case of hybrid perovskites, the

organic molecular cation makes hydrogen bonding with the anions leading to varying

bond lengths, that makes it more difficult to define an ionic radii.

α =
(rOM + rX)√
2(rB + rX)

(1.9)

Recently G. Kieslich et al. have proposed a way [11] which involves calculating effective

ionic radii of organic cations from the existing crystallographic data of hybrid perovskites.

Depending on the level of anisotropy, the organic ions were considered either as a sphere

or cylinder. For the case of organic cations, a sphere model considering the rotational

degrees of freedom around the center of mass of the molecule was considered. With such

considerations, the effective ionic radii were calculated using Equation (1.10).

rAeff = rmass + rion (1.10)

Where rmass is the distance between the center of mass(CM) of the molecule and the atom

that have the maximum distance from the center of mass, excluding the hydrogen atoms.
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rion is the ionic radii of this atom. Using this in place of rOM in Equation (1.9) allows

one to calculate the tolerance factor for such hybrid systems.

Figure 1.15: (a) Structure of the Guanidinium [C(NH2)3] molecule with the center of mass(CM) at
the C atom. rmass and rion are also mentioned. (b) Schematic of the model considering the anions as
rigid cylinders to calculate the tolerance factors of perovskites containing complex molecular anions like
HCOO−.

For example, as shown in Figure 1.15(a), in case of the Guanidinium [C(NH2)3]
+ cation

they found a rmass = r(C-N) = 132 pm and rion = r(N3−) = 146 pm. Then Equation

(1.10) gives a value of rAeff = 278 pm. Using this approach they calculated the effective

radii for a set of organic molecules that can be used to estimate the tolerance factors for

the corresponding perovskite systems. The effective ionic radii for some of the organic

cations are given in Table 1.1.

Table 1.1: Effective ionic radii of molecular cations(taken from Ref. [11]). Ionic radii for
the inorganic ions were used from Ref. [12]

Organic cation Effective ionic radii(rAeff) in pm
1 Ammonium [NH4]

+ 146
2 Hydroxylammonium [H3NOH]+ 216
3 Methylammonium [CH3NH3]

+ 217
4 Hydrazinium [H3N-NH2]

+ 217
5 Azetidinium [(CH2)3NH2]

+ 250
6 Formamidinium [NH2(CH)NH2]

+ 253
7 Imidazolium [C3N2H5 ]+ 258
8 Dimethylammonium [(CH3)2NH2]

+ 272
9 Ethylammonium [(C2H5)NH3]

+ 274
10 Guanidinium [C(NH2)3]

+ 278
11 Tetramethylammonium [(CH3)4N]

+ 292
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For molecular anions such as HCOO−, CN−, the situation becomes more complicated

due to their high anisotropy. For such a case they treated all molecular anions as rigid

cylinders, with an effective radius rAeff and an effective height hAeff . These are shown as

green cylinders(leveled as X) in Figure 1.15(b). The radius(rAeff ) and the height(hAeff )

of the cylinders were then evaluated using Equation (1.10). Using these concepts the

general formula for calculating the tolerance factor of hybrid organic-inorganic systems is

given by [11]:

α =
(rAeff + rXeff )√
2(rB + 0.5hXeff)

(1.11)

Using this general formula they calculated the tolerance factor for a series of hybrid

perovskites. The value for some of the important systems is given in Table 1.2.

Table 1.2: Tolerance factor of some important hybrid perovskite systems calculated using
the generalized approach [11]). The effective ionic radii for the inorganic ions were taken
from Ref. [12]

A-site Organic molecule B-site cation Anion(X) Tolerance factor

Methylammonium Pb Cl 0.938
Br 0.927
I 0.912

Sn Cl 0.951
Br 0.939
I 0.922

Formamidinium Pb Cl 1.023
Br 1.008
I 0.987

Sn Cl 1.037
Br 1.021
I 0.998

Ethylammonium Pb Cl 1.072
Br 1.055
I 1.030

Sn Cl 1.087
Br 1.069
I 1.043
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1.5.2 Role of Hydrogen bonding in octahedral tilting

Methylammonium lead iodide (MAPbI3, MA = CH3NH3) is one of the well known and

most studied members of the hybrid perovskite series. It has been shown both experimen-

tally [73] as well as theoretically [74] that, structure and electronic properties of hybrid

perovskites are strongly correlated. However the most important structural parameter to

tune the electronic structure, the octahedral tilts usually occur in the low-temperature

states. For example, MAPbI3 undergoes a series of temperature dependent structural

phase transition with an increased degree of octahedral tilting as the temperature de-

creases [75]. The high-temperature phase above 330 K is cubic without any octahedral

tilts. As shown in Figure 1.16(a), the inorganic cage containing the MA molecule is a

perfect cube with the Pb-I-Pb bond angles equal to 180o. Below 330 K octahedral tilting

occurs leading to a low symmetry tetragonal phase. The octahedral tilt pattern can be re-

alized as originating from the high symmetry cubic state, due to rotation of the octahedra

in an out of phase manner along one of the pseudocubic axis(z-axis/c-axis). This results

in the in-plane(ab-plane) Pb-I-Pb bond angles to deviate from 180o[see Figure 1.16(b)].

Below 160 K, with further symmetry lowering the system enters an orthorhombic phase

due to octahedral rotations about all the pseudocubic directions and all Pb-I-Pb bond

angles deviating from 180o[Figure 1.16(c)].

Figure 1.16: (a) Total orientational disorder of the MA molecule in the cubic phase without any
octahedral tilts. The Pb-I-Pb bond angles along all the three cubic directions are 180o (b) Below 330
K (MA)PbI3 enters tetragonal phase with octahedral rotations about the c-direction, leading to the in-
plane(ab-plane) Pb-I-Pb bond angles to deviate from 180o and the molecule is four-fold orientationally
disordered around the c-axis. (c) Deviation of all the Pb-I-Pb bond angles from 180o in the orthorhombic
phase below 160 K and ordering of the MA molecules.

Along with structural changes the dynamic state of the MA molecule also undergoes

drastic changes . Missing X-ray diffraction pattern for the (CH3NH3)
+ group in the high

temperature cubic phase already suggested static disorder or dynamic reorientation of

the MA molecule. An electric dipole moment associated with the MA molecule makes it
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possible to do dielectric measurements that can probe any dynamic motion associated with

the molecule. Dielectric data [76] showed dynamic disorder of the MA molecule where the

C-N axis is free to rotate about any direction. The disordered state of the molecule inside

the inorganic cage is schematically shown in Figure 1.16(a). With decreasing temperature,

the dynamic disorder also decreases. In the tetragonal phase the C-N axis of the molecule

shows four-fold orientational disorder around the c-axis in the ab-plane[Figure 1.16(b)].

And in the orthorhombic phase ordering of the MA molecules takes place with a preferred

orientation and stacking which again leads to formation of hydrogen bonding between

the hydrogen atoms and the anions(I−)[Figure 1.16(c)]. Previously it was shown that the

hydrogen bonding plays an important role in determining the preferred orientation of the

MA molecule [77]. The orientation of the molecule is such that, hydrogen bonding between

the molecule and the anions is maximized. Recently, based on ab-initio density functional

theory calculations [78], it has been shown that hydrogen bonding is also responsible for

the octahedral tilts in the low temperature orthorhombic phase.

To show this they consider the low-temperature orthorhombic structure of MAPbI3 and

the inorganic perovskite series APbI3, where A = K, Rb, Cs, and Fr. The low-temperature

orthorhombic phase for each of the inorganic system shows a tilt pattern similar to

MAPbI3 as shown in Figure 1.17(a). For each system, they did two different calcula-

tions and calculated the total energy. In the first calculation, the structure was allowed to

fully relax so that the ions can move to their equilibrium positions for a minimum energy

configuration . The fully relaxed ground state(GS) structure for all systems were found

to be distorted with octahedral tilting analogous to the experimental orthorhombic struc-

ture. In the second calculation they considered a high symmetry(HS) phase[see Figure

1.17(b)] for each systems where,

1. The unit cell dimension was exactly the same as the fully relaxed ground state(GS)

structure.

2. Pb and I atoms were forcefully fixed at their ideal positions so that the PbI6 octa-

hedra become fixed and untilted.

3. The A-site cations were allowed to relax for their equilibrium position/configuration.

For the inorganic perovskites, the high symmetry phase considered in the calculations sim-

ply corresponds to the low temperature orthorhombic phase but without any octahedral

tilts. For the (MA)PbI3, it is a kind of hypothetical phase without any octahedral tilts,

where the local coordinates of the MA cation were relaxed but with the same orientation

and conformation found in the orthorhombic phase. After this, they quantify the energy
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Figure 1.17: (a) The ground state (GS) and (b) high symmetry (HS) structures of orthorhombic
(MA)PbI3, composed of PbI6 octahedra and MA molecules at the octahedral cavity. (c) The energy
difference between the HS and the GS structures(EHS−GS) as a function of the tolerance factor for
the APbI3 inorganic series (green circles) and (MA)PbI3 (yellow square). The horizontal error bar in
(MA)PbI3 represent the difference in tolerance factor calculated using the sphere and cylinder methods(see
section 1.5.1)[Figures are taken from Ref. [78]].

difference (EHS−GS), between the fully relaxed ground state(GS) orthorhombic structure,

and the high symmetry(HS) phase for each system. This energy difference gives a measure

of the propensity of octahedral tilting. If EHS−GS is positive then the system would have

a ground state structure with octahedral tilts otherwise it would not like to tilt.

Along with this, the tolerance factor was also calculated for each of the systems to check

for any mismatch in the ionic size and probable octahedral tilting due to steric effects.

For this, a simple approach was followed [73]. They considered the effective ionic radii

for each cation or anion as the radii of the sphere that contains 95% of the calculated

electron density. For the MA+ cation, both a sphere and a cylinder was considered to

determine two effective radii that differ from each other by only 0.04 Å suggesting that

this approach is reliable.
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EHS−GS for all the five systems as a function of the tolerance factor is shown in Figure

1.17(c). For the inorganic series APbI3, as we go from K to Fr, the value of the tolerance

factor increases due to an increase in the size of the A-site cation. On the other hand,

the energy difference EHS−GS between the non-tilted and tilted state decreases indicating

a reduction in the octahedral tilting. This is in accordance with the general properties

of a perovskite structure. The relation between EHS−GS and tolerance factor for APbI3

suggests that a hypothetical perovskite of the series APbI3 with a tolerance factor of

0.83(extrapolation of the green curve in Figure 1.17(c) cuts x-axis at 0.83) would not

like to tilt due the zero value of EHS−GS. This perovskite of the APbI3 series contains a

hypothetical A-site cation with effective ionic radii same as determined for MAPbI3 which

also have a tolerance factor ∼ 0.83. But for MAPbI3 we have a finite value of EHS−GS

∼ 0.25, with a tilted ground state. Now the only extra mechanism that is present in

MAPbI3 compared to APbI3 is the hydrogen bonding due to the presence of hydrogen

atoms associated with the molecule. Based on this result they conclude that octahedral

tilting in MAPbI3 appears to be induced by hydrogen bonding and not by the size of the

molecule.

In the fourth and fifth chapters of this thesis we study the role of the organic molecule in

determining the properties of such materials taking the example of (CH3NH3)PbBr3 [79].

The molecule CH3NH3 has two parts, the amine part(NH3 group) and methyl part(CH3

group). To have an idea of how the molecule interacts with the inorganic network, we

mapped the ab-initio band structure onto a tight binding model. This helped us to switch

off the covalent interactions between specific pair of atoms. Considering the optimized

structure, we switched off the interactions between hydrogen and Br atoms. We see that

the gain from covalency between methyl part and Br ions is almost an order of magnitude

higher than the covalency gain from amine part. Due to the different nature of the two

parts of the molecule it also acts as an electric dipole. Having understood the energetics

governing the location of the molecule in the octahedral cavity as well as its interactions

with the inorganic cage, we proceed to examine if the calculations could throw some

light on the glassy dynamics that have been seen within the orthorhombic phase where

the dipoles are believed to be frozen and ordered. Our analysis of small excursions of

the molecule about its position in the optimized structure, and allowing the inorganic

network to accommodate that change, suggest that the energy landscape is complex with

multiple minimums which are close in energy. The differences in the structures are small

with the molecule having different orientations. The presence of such close lying minima

separated by large barriers are evidence for the observed glassy dynamics. The system

could be quenched into either of these configurations which can additionally be accessed

by thermal excitations.
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The ordering of such microscopic dipoles in a material may or may not take place lead-

ing to ferroelectric properties. On the other hand there are materials which are at the

brink of a ferroelectric transition, where the dipolar order is being suppressed by quan-

tum fluctuations. Usual examples of ferroelectrics are d0 materials i.e. those which have

an empty d shell. This has been an empirical principle being used to roughly identify

materials which would be ferroelectric. While not all d0 materials are ferroelectric, it has

been seen that several of them could be identified as incipient ferroelectrics, where there

is no ferroelectric order down to low temperatures. TiO2 is one such example. In such

materials, a small perturbation could drive the system ferroelectric. In the sixth chapter

of this thesis using ab-initio density functional theory calculations [80], we explore doping

a Nb-Cr pair in TiO2 as a route to drive it ferroelectric. Nb and Cr go into the 5+ and 3+

valence states and therefore behave like a dipole. Analogous to dilute magnetic semicon-

ductors, where doping small concentrations of magnetic atoms in otherwise non-magnetic

materials drives the system magnetic, here, the introduction of the dipole is shown to

polarize regions in the vicinity of the dopant. Ferroelectricity is therefore found to be

stabilized. While this mechanism is indeed found to work at low Nb-Cr doping, at higher

doping concentrations a clustering of the dopant atoms is found to destroy long-range

ferroelectric order. Finally in the seventh chapter we show how structural differences can

lead to dissimilar ferroelectric properties considering two well known ferroelectric materi-

als BaTiO3 and PbTiO3. Tetragonality in the ferroelectric structure of BaTiO3 is smaller

than PbTiO3. Hence the off-center displacement of the Ti atom along the tetragonal

axis is assisted by short-ranged repulsion forces that pushes the planer oxygen atoms in

the opposite direction to that of the Ti atom. Where as due to a larger tetragonality in

PbTiO3, Ti displacement is dominated by the covalency gain between Ti atom and apical

oxygen. So, in the next section we are going to discuss the general dielectric properties

of ferroelectric materials and show how cation displacements within the octahedral units

can lead to ferroelectric order in the system.

1.6 Ferroelectricity due to cation displacement

We have already discussed the importance of structural distortions like octahedral rota-

tions and deformations in controlling the electronic structure of perovskite materials. In

those cases, we mainly emphasized the role of A-site cation in controlling the octahedral

tilts and distortion of the BX6 octahedra as a result of the specific electronic configu-

ration of the B cation. In such structural distortions, mainly the anions were displaced

about the heavier cations which were fixed at particular lattice sites. However, distor-
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tions due to the displacement of the cations can also lead to interesting properties in a

perovskite system. The A-site cation, in general, does not have any direct contribution

to the electronic properties and mainly results in steric effects. But the B-site cation

could be responsible for magnetic properties of the material. Depending on the electronic

configuration we could have a permanent magnetic moment of the B cation that can give

rise to magnetic ordering. The B cation can also result in ferroelectric properties as a

result of its displacement from the center of the octahedra. In this section, we are going to

discuss the general properties of a ferroelectric material and the origin of ferroelectricity

due to such cation displacements in perovskites.

1.6.1 Electric polarization and Dielectric response

Corresponding to the response of a material in the presence of an external electric field

one may divide all materials into broadly two classes, conductors, and dielectrics. By

response we mean the material getting polarized, i.e. the development of an electric field

inside the material. Conductors contain a lot of free charges that are free to roam through

the whole material. If there is an electric field inside such a material, the free charges

redistribute in such a way to cancel the field so that the net field inside the material

is zero. In the case of dielectrics, there are no free charges. All electronic charges are

attached to atoms that build the material. Simply we can think that in the presence of

an external electric field(E0) the charges are unable to get detached from the atoms, but

they are slightly displaced so that the positive and negative charge center of each atom

gets separated to form a tiny dipole. And the material gets polarized when all the atomic

dipoles point in the same direction. So, when we are speaking of polarization of a material,

we are speaking of a macroscopic polarization [81] which is the average polarization over

a large enough region consisting of many thousands of atoms. Because in the microscopic

or atomic level there may be local polarization or local moments even in conductors due

to charge separation but when we try to find the macroscopic polarization by averaging

over a large enough region, we find that the moments are randomly oriented resulting in

zero polarization. The Polarization of a dielectric material is measured with polarization

vector P defined as,

P = Electric dipole moment per unit volume.

[This unit volume is large enough to accommodate many atoms and molecules.]
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Dielectric materials can have different polarization mechanisms that can respond to an

external electric field and result in polarization of the material. These are discussed below

in brief:

1. Electronic polarization: If we consider any material simply as a collection of

atoms then, with the application of an external electric field the atoms become

polarized forming atomic dipoles. As shown in Figure 1.18(a), the electron cloud

of each atom surrounding the nucleus become shifted by the field and the atom act

as a dipole. This gives rise to electronic polarization. Solids formed as a result of

van der Waals force, for example, solid Ar below 83.8 K are a collection of inert

atoms where the electron cloud is tightly attached to their nuclei. In such case, the

electronic polarization is quite small because the electron hardly shifts with respect

to the nucleus. Whereas electronic polarization in covalent solids due to the valence

electrons in the covalent bonds is much higher and significant. For example, in

crystalline silicon, there are electrons shared with neighboring Si atoms in covalent

bonds which are loosely bound to their parent atoms. When an electric field is

applied, the negative charge distribution associated with these valence electrons

becomes easily shifted with respect to the positive charges of the ionic Si cores and

results in a large polarization.

2. Ionic polarization: This type of polarization occurs in ionic crystals such as

NaCl, KCl etc. The ionic crystal is formed due to electrostatic interactions between

ions located at well defined lattice sites. As an example, if we consider a one-

dimensional(1D) NaCl crystal then as shown in the upper panel of Figure 1.18(b),

it can be depicted as a chain of alternating Na+ and Cl− ions. Each pair of oppositely

charged ions act as an electric dipole(p). In the absence of an external field, there

is no net polarization because the dipole moments are lined up head to head and

tail to tail canceling each other. The dipole p+ along the +ve x-axis cancels the

dipole p− along the -ve x-axis. Now if we apply an electric field along the +ve

x-axis, then as shown in the lower panel of Figure 1.18(b), the Cl− ions are pushed

in the −x-direction and the Na+ ions in the +x-direction about their equilibrium

positions. In such a situation we have p+ > p− and the net dipole moment is now

no longer zero.

3. Orientational/Dipolar polarization: Some molecules possess a permanent

dipole moments as a result of their ionic components. For example, the linear HCl

molecule has a permanent dipole moment p from the Cl− ion to the H+ ion[Figure

1.18(c)]. In the liquid or gas phases, and in the absence of an electric field, they are
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Figure 1.18: (a) The charge distribution of the valence electrons around the ion cores in a covalent
solid, in absence and presence of an electric field. In the presence of an electric field, they are shifted
with respect to the ion cores and act as a dipole. This gives overall polarization of the material. (b) A
1D NaCl chain. Without any external field, the positions of the ions are such that the dipoles along +ve
and -ve x-direction cancels each other. But in the presence of an external field, the ions get shifted and
there is a net dipole moment per unit cell. (c) The HCl molecule possesses a dipole moment p due to
the H+ and Cl− ions. In the absence of any field, the dipoles are random due to thermal agitation. An
external electric field produces a torque on the dipoles and tries to align them with the field direction.
(d) A dielectric material between two electrodes with an equal number of positive ions and negative ions.
The negative ions can move and with the application of an electric field, they accumulate at the interface
near the positive electrode. There is a charge separation with a net polarization

randomly oriented as a result of thermal agitation[upper panel of Figure 1.18(c)].

Application of an external electric field E tries to align the dipoles of each individ-
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ual molecule along the field direction and the material gets polarized[lower panel of

Figure 1.18(c)].

4. Interfacial polarization: Interfacial polarization occurs whenever there is an ac-

cumulation of charge at an interface between two materials or between two regions

within a material. The simplest example is interfacial polarization due to the accu-

mulation of charges in the dielectric near one of the electrodes, as depicted in Figure

1.18(d).

The dielectric response in a simple sense is the dependence of the polarization or related

/associated measurable quantities that can be directly measured from an experimental

setup, with the electric field. It is an important tool for material characterization. We

can get a lot of information both macroscopic as well as microscopic from this kind of

measurements . The best way to see the dependence is by varying the electric field and

see how polarization changes. The ultimate case would be to see the dependence with an

ac electric field.

Dielectrics are used in capacitors, so let us start from here and know some general and

basic macroscopic properties of a dielectric material. In a parallel plate capacitor, the

charge stored on each plate(±Q) is related to the potential difference(V) between the two

plates as,

Q = CV (1.12)

where, C is the capacitance of the capacitor. For a parallel plate capacitor,

C = ǫ
A

d
(1.13)

where, A = surface area of the plates, d = distance between the plates, ǫ = permittivity

of the dielectric material between two plates. ǫ = ǫ0ǫr, where, ǫ0 is the permittivity of

free space with a value of 8.85×10−12 F/m and ǫr is the relative dielectric permittivity or

dielectric constant of the material. Now applying Gauss’s law for a parallel plate capacitor

gives,

|E| = ǫ
V

d
(1.14)
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where E is the total field inside the dielectric material. That means the material is now

polarized and for most of the materials the polarization(P) becomes a linear function of

the electric field E defined as [81],

P = χE (1.15)

where χ is called the dielectric susceptibility and the materials that follow the above

equation are called linear dielectrics. If a dielectric material is placed in an external

electric field E0 then P cannot be computed from Equation (1.15) directly. So, we have

to deal with a physically measurable quantity, D, the electric displacement field defined

as,

D = ǫE = ǫ0E+ χE = ǫ0E+P (1.16)

For a parallel plate capacitor, D = Q/A. Now, the above equations are for static electric

field and with this, we do not get any information about the material properties. This is

only possible if we observe the behavior of P in an ac field. Equation (1.15) is equally

valid if E oscillates with a frequency ω(ω = 2πf), given as [82],

P(ω) = χ(ω)E(ω) (1.17)

One of the source of such oscillating electric field is the field in electromagnetic radiations,

E = E0cos(ωt). The detail expression for Equation (1.17) can be derived by considering

the polarization mechanism that is present in the material and how they behave under

the oscillating electric field.

Complex analysis, by representing the oscillating electric field and polarization in term of

exponential quantities gives an expression of χ(ω) which is also complex with a real and

imaginary part as,

χ(ω) = χ̃(ω) = χ
′

(ω)− iχ
′′

(ω) (1.18)

χ
′

(ω) defines the real component of P(ω) in the equation, P(ω) = χ̃(ω)E0exp(iωt), where

we consider the electric field at a particular point in space, i.e. in phase, with E(ω) =

Re[E0exp(iωt)] = E0cos(ωt). So, χ
′

(ω) gives a measure of the oscillating polarization.

χ
′′

(ω) is often called the power dissipation factor. This arises due to the presence of

damping terms in the equation of motion governing the evolution of the polarization
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components under the oscillating field. In a broad sense, χ
′′

(ω) indicates that the electric

field has to do some work on the dielectric material to produce a net dipole moment

density. Some energy is stored in the process of charge separation and is recoverable. Rest

of the energy is used to overcome friction or resistance that opposes the development of

dipole moment density or charge movement.

Frequency dependence of χ
′

(ω) and χ
′′

(ω) gives important information about the polar-

ization mechanism present in a dielectric material. Let us consider a system of N hydrogen

atoms. We consider the nucleus to be fixed at lattice sites such that the only polarization

mechanism present is electronic polarization due to the displacement of the single electron.

If we consider an electric field applied along a particular direction then, we can model

each atom as a 1D simple harmonic oscillator of mass m, charge q and force constant k,

which can respond to an applied electric field with frequency ω. Solving the equation of

motion for a forced and damped harmonic oscillator for such N oscillators gives a value

for χ
′

(ω) and χ
′′

(ω) as [83],

χ
′

(ω) =
Nq2

m

[
(ω2

0 − ω2)

(ω2
0 − ω2)2 + γ2ω2

]
(1.19)

χ
′′

(ω) =
Nq2

m

[
γω

(ω2
0 − ω2)2 + γ2ω2

]
(1.20)

where ω0 is the natural frequency of oscillation of each of the oscillator and γ is the

damping constant. A schematic plot of χ
′

(ω) and χ
′′

(ω) as a function of the frequency, ω

in the vicinity of the resonance frequency ω0 is shown in Figure 1.19(a). As we go from left

to right, χ
′

(ω) slowly increases with increasing frequency, this is called normal dispersion.

As we reach the resonance frequency, χ
′

(ω) shows a sharp drop which signifies that the

polarization mechanism gets inactive at larger frequencies as it is unable to follow the

rapid switching of the polarizing field. This happens due to the damping and hence χ
′′

(ω)

shows a peak about the resonance frequency ω0 indicating large energy dissipation as a

result of large amplitude oscillation of the polarization elements. Here the broadening

of χ
′′

(ω) is due to the damping. More the damping more broad shall be the peak. Now

frequency dependence of χ̃ leads to a similar frequency dependence of the permittivity ǫ̃

defined as,

ǫ̃(ω) = ǫ0 + χ̃(ω) = ǫ
′

(ω)− iǫ
′′

(ω) (1.21)
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Figure 1.19: (a) A schematic representation of the frequency dependence of the real(χ
′

) and
imaginary(χ

′′

) part of dielectric susceptibility in the vicinity of the resonance frequency ω0 (b) The
temperature and frequency dependence of the relative permittivity, ǫ

′

r, of SrFe0.5Ta0.5O3 ceramics[Figure
taken from Ref. [84]]. The logarithmic scales on each axis shall be noted. (c) The frequency dependence of
the real(ǫ

′

r) and imaginary(ǫ
′′

r ) part of dielectric permittivity in the presence of interfacial, orientational,
ionic, and electronic polarization mechanisms.[Figure taken from Ref. [85]]

The relative permittivity then becomes,

ǫ̃r(ω) =
ǫ̃(ω)

ǫ0
= 1 +

χ̃(ω)

ǫ0
= ǫ

′

r(ω)− iǫ
′′

r (ω) (1.22)

which gives,

ǫ
′

r(ω) = 1 +
Nq2

mǫ0

[
(ω2

0 − ω2)

(ω2
0 − ω2)2 + γ2ω2

]
(1.23)

and,

ǫ
′′

r (ω) =
Nq2

mǫ0

[
γω

(ω2
0 − ω2)2 + γ2ω2

]
(1.24)

In this regard we shall also define an important quantity often used in relation to the

energy dissipation, called the dielectric loss factor or loss tangent and is defined as [85],
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tanδ =
ǫ
′′

r

ǫ′r
(1.25)

For material with no loss ǫ
′′

r = 0 and hence tanδ = 0. The dispersion measurements

are done in an isothermal way at a particular temperature. However, a variation of the

quantities with temperature is also necessary and done, which can show the important

signature of dielectric phase transition. The temperature has a similar effect on the

polarization elements present in the system. The relative permittivity ǫ
′

r will tend to

increase with temperature as polarizing elements become more mobile and they can easily

respond to the oscillating field. The dependence of ǫ
′

r on temperature and measuring

frequency of the dielectric ceramic material SrFe0.5Te0.5O3 [84] is shown in Figure 1.19(b).

In real materials, there are many polarization mechanisms and depending on their response

to the oscillating field, the dispersion of ǫ
′

r(ω) and ǫ
′′

r (ω) can be very complicated. We can

represent the general features of the frequency dependence of ǫ
′

r(ω) and ǫ
′′

r (ω) as shown in

Figure 1.19(c) [85]. Although the figure shows distinctive peaks in ǫ
′′

r (ω) and transition

features in ǫ
′

r(ω), in reality, these peaks and various features are broader. Moreover,

the polarization effects depend on the crystal orientation. In the case of polycrystalline

materials, various peaks in different directions overlap to exhibit a broadened overall peak

[85]. Another interesting fact to note is the response frequency of different mechanisms.

The resonance frequency for electronic polarization mechanism is higher than ionic, simply

because in terms of oscillation electrons are much lighter than nuclei. Here we have an

oscillation of electrons with respect to nuclei in an atom itself. Whereas in case of ionic

polarization, oscillation of two different ions with respect to each other takes place. At

low frequencies the space charge polarization occurs with more broader peaks because

there can be a number of conduction mechanisms (different species of charge carriers and

different carrier mobilities) for the charges to accumulate at interfaces, each having its

own speed [85]. Orientational polarization, especially in many liquid dielectrics at room

temperature, typically takes place at radio to microwave frequencies.

1.6.2 Ferroelectricity and its origin in perovskite BaTiO3

Ordinary dielectric materials have a polarization in the presence of an external electric

field only and get depolarized when the field is removed. But there are some dielectric

materials that have a spontaneous polarization(PS) i.e. they remain polarized even in

the absence of any external electric field. The materials that show this property are

called ferroelectrics. The distinguishing feature of ferroelectrics is that the spontaneous
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polarization can be reversed by an applied electric field(E0). The polarization(P) becomes

a nonlinear function of the internal electric field E. It is now dependent not only on the

current electric field but also on its history, yielding a hysteresis loop. Ferroelectric effect

was first observed in Rochelle salt (Potassium sodium tartrate a double salt with molecular

formula KNaC4H4O6.4H2O) in 1917 by A.M. Nicolson and J.A. Anderson [86]. A few years

later the physical properties of Rochelle salt were described in detail in a series of papers

by J. Valasek around 1921 [87, 88]. However discovery of ferroelectricity in perovskite

BaTiO3 by Wul and Goldman (1945, 1946) [89] followed by other perovskites, such as

KNbO3 and KTaO3(Matthias 1949), LiNbO3 and LiTaO3(Matthias and Remeika, 1949)

and PbTiO3(Shirane, Hoshino and Suzuki, 1950) [90], made it possible to investigate the

microscopic origin of ferroelectricity in much simpler systems [91]. It is easy to understand

that, in a ferroelectric material there are permanent dipole moments at the atomic level,

which are correlated and points in the same direction even in absence of an external

electric field. This gives rise to a spontaneous macroscopic polarization. In a crystalline

material such permanent dipole moments shall develop within the structural unit or the

unit cell. The correlation mechanism between the dipoles that makes them order is an

important subject to study. But before that we shall understand how a permanent dipole

can be generated in a crystalline material. Here we are going to to discuss how B-site

cation displacement in perovskites can give rise to permanent dipole moment, taking the

well known ferroelectric BaTiO3 as an example.

The fundamental cause of ferroelectricity in oxide perovskites was originally attributed

to the idea that a small B-site cation could ‘rattle around’ inside the BO6 octahedra

and off-center configurations can lead to stability of the structure [84, 92]. Considering

a cubic unit cell for BaTiO3, the Ti atom sits inside the center of a regular octahedron

surrounded by six oxygen atoms[Figure 1.20(a)]. Now if we consider the system to be

purely ionic, BaTiO3 → Ba2+Ti4+O2−
2 , then the Ti4+ ion would like to sit at the center

of the octahedra for a maximum gain from electrostatic interactions. But as Ti4+ is a d0

system, hence there is a significant covalent interaction possible between Ti and O atoms

as a result of electron hopping. As a result, as shown in Figure 1.20(a), the Ti atom can

move towards any one of the oxygen atoms to gain from an increased hopping interaction.

Considering this facts W. P. Mason [92] et al. proposed a simple model for ferroelectricity

in BaTiO3 around 1948. In this model the small Ti4+ ion surrounded by six oxygen ions

is depicted as being in an off-center six fold potential well minimum. Here, there is six

potential minimum in the direction of the six oxygens which are displaced a distance δ

from the center of the octahedra[see Figure 1.20(b)]. If the titanium nucleus is taken from

a position such as 1 to position 2 directly across the unit cell, the form of the potential

barrier may be as shown in Figure 1.20(c), in which ∆U represents the height of the
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potential curve at the center with respect to that at the minimum. So under equilibrium

condition the Ti4+ cations occupies any one of the minima via a displacement from the

center.

Figure 1.20: (a) Regular TiO6 octahedra with the Ti atom surrounded by six oxygen atoms. Possible
directions of movement of the Ti atom is shown by the arrows. (b) Location of six potential well minimums
along the six Ti-O bonds at a distance δ from the center of the octahedra. (c) Shape of the potential
barrier with height ∆U at the center of the octahedra during movement of the Ti ion from one minima
to the other.

The displaced B-site cation creates an electric dipole within each octahedron. The direc-

tion of the dipole, or, equivalently, the position of the cation, could be switched from one

off-center position to another under the influence of an external electric field. Above 120o

C, BaTiO3 adopts the ideal cubic perovskite structure with lattice parameter, a = 3.97

Å [84] and behave like a normal paraelectric material. At this temperature the thermal

energy becomes comparable to the barrier height ∆U , and without an applied field the

dipoles are random due to thermal agitation. Below 120o C an external electric field can

make the cations to move towards a preferred direction which shall remain even after the

removal of the field generating a spontaneous polarization, characteristic of a ferroelectric

state. Such off-center displacement of the Ti atom ∼ 0.16 Å was measured with X-ray

methods by Gordon Danielson [93]. However, there is also a cubic to tetragonal phase

transition at 120o C which was confirmed by X-Ray measurements for multicrystalline

ceramic [94].

Below 120o C the cubic cell contracts slightly along the a and b axes and expands slightly

along the c-axis becoming tetragonal in shape[Figure 1.21(a)]. The change from cubic

to tetragonal is accompanied by an off-center movement of the Ti4+ ions along the c-

axis, and a slight change in octahedron dimensions so that two equatorial oxygen atoms

move parallel to the +ve c-axis and in the opposite direction [Figure 1.21(b)]. The Ti-O

bond lengths parallel to the c-axis now becomes, 2.2 and 1.8 Å respectively, while the

equatorial bond lengths remain at 2 Å. This results in the formation of a dipole within

each octahedron, with a net dipole moment ∼ 26 µCcm−2 [84], each pointing along the



1.6. FERROELECTRICITY DUE TO CATION DISPLACEMENT 45

Figure 1.21: Tetragonal BaTiO3 : (a) The tetragonal unit cell compared to the cubic unit cell (dashed).
Tetragonality is along the c-axis. (b) Displacements of the Ti and O atoms found in tetragonal BaTiO3 ;
(c) a schematic showing dipole array in tetragonal BaTiO3 ; (d) schematic of a typical domain structure
in a crystal slice. (All distortions are greatly exaggerated)[Figures are taken from Ref. [84]].

c-axis [Figure 1.21(c)]. So, now with a cubic to tetragonal phase transition, we have an

easy axis of polarization(here c-axis) such that the ferroelectric distortion occurs in that

direction and the material becomes spontaneously polarized. However the off-center Ti4+

position and the octahedral deformation can be changed with an electric field and hence

the tetragonal phase of BaTiO3 is ferroelectric [84] in nature. Now there is no preference

as to which of the original cubic axes becomes the polar direction. It can happen along x,

y or z-axis. On cooling a large crystal, any of these displacements is possible, and within
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different regions of the crystal different orientations occur, leading to the formation of

domains in which all the dipoles are aligned in a particular direction [Figure 1.21(d)].

The polarization directions in a domain are related to those in neighboring domains by

the crystallography of the matrix [84].

1.6.3 Displacive phase transition and soft modes

All ferroelectric materials undergo a transition from a ferroelectric state to a paraelectric

state on heating. This suggests that with heating either the microscopic dipole moments

are now randomly oriented with each other to give an average polarization of zero or the

microscopic dipole moments no longer exists to give a net polarization. The first case is

known as an order-disorder phase transition. In the second case, the permanent dipole

moments emerges below the transition temperature and becomes ordered to give rise to

a spontaneous polarization. This is called a displacive phase transition. This type of

phase transition is associated with a structural transition where the system undergoes a

symmetry change. BaTiO3 shows a displacive phase transition associated with a cubic to

tetragonal distortion of the unit cell.

In the early 60’s, the soft-mode concept was proposed to describe the mechanism of

structural phase transitions related to ferroelectric materials. The predictions made by

Cochran [95] that the phase transition in certain ferroelectrics might result from dynamical

instability was a beginning. Any dynamic distortion (vibrational state) in a crystalline

solid can be described in terms of its complete set of normal modes of vibration or phonons.

When a solid experiences a transition from one crystal structure to another, the transition

is often described essentially completely in terms of anomalous behavior of only a single

such mode, characterized by its displacement eigenvector, frequency, and wavelength [96].

By a soft mode, it is meant that a normal vibrational mode (phonon) of the crystal which

becomes unstable, so that it’s normal frequency ωs (at some particular wave vector q in

the brillouin zone) tends to zero as T −→ Tc[Figure 1.22(a)].

This softening occurs as a result of anharmonic interactions in the crystal that cause a

temperature renormalization of the phonon frequencies. Considering the anharmonicities

the temperature dependence of the soft mode is then given as [97],

ω2 =
|ω2

0|
Tc

(T − Tc) (1.26)

where, ω2
0 is the negative harmonic value that we would calculate in the lattice dynamics

calculation. The idea of the soft mode for displacive ferroelectric phase transitions is
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Figure 1.22: Schematic representations of ferroelectric soft mode behaviour: (a) behaviour of the
phonon dispersion curves with temperature. (b) Atomic displacements. [Figures are taken from Ref. [97]]

implicit in the Lyddane-Sachs-Teller relation giving the relation between the low and

high-frequency dielectric responses of the dielectric permittivity ǫ given as

ǫ(ω = 0)

ǫ(ω = ∞)
=
ω2
LO

ω2
TO

(1.27)

The point is that since the static dielectric constant ǫ(ω = 0), diverges at the ferroelectric

phase transition, then the above relation implies that ω2
TO tends to 0 at the same time. A

particular phonon frequency going to zero indicates that the corresponding vibration (or

the atomic positions) become “frozen” at this temperature and is no longer dynamical and

produce a structure of another symmetry. This is schematically shown in Figure 1.22(b).

It is to be noted that whereas in a second-order transition, the soft-mode frequency

actually vanishes at the transition point, in a first-order transition the change of phase

occurs before the frequency of the mode is able to go to zero [98]. Also softening occurs

whenever we approach the transition temperature Tc for cooling or heating. This is

expected because if the structural transition during cooling is due to the condensation of

a soft-mode that exists above Tc then there must be some modes for the structure below

Tc, instability or condensation of which gives rise to the phase transition as Tc is reached

during the heating process. And there are as many soft modes below Tc as there are above

Tc [98].

The structure of the new phase is uniquely determined by the eigenvector of the soft

mode and the structure of the old phase. The eigenvector of a phonon mode is simply the

array of atomic displacements relative to the lattice sites accompanying the excitation of

that mode [96]. The vanishing of the normal mode frequency at Tc corresponds to a static

imposition of this array of atomic displacements on the old structure[Figure 1.22(b)]. The
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eigenvector of the soft mode qc not only gives the displacement of the atoms within the

unit cell relative to the lattice sites of the old phase to give a new structure, but it also

determines the phase modulation of the displacement amplitude from one unit cell to the

next through the same wave vector qc (point to note is that |q| = 2π/λ, where λ is the

phonon wavelength).

Figure 1.23: A typical structural distortion due to zone center phonon softening. For (a) T > Tc and
(b) T < Tc.

In the simplest case, such as the displacive ferroelectric phase transition, the array of

displacements is identical for all unit cells, i.e. qc = 0. The phonon instability then occurs

at the center of the Brillouin zone and there is no change in the number of atoms per

unit cell in the phase transformation. For example, the non-ferroelectric cubic perovskite

lattice as shown in Figure 1.23(a), is centrosymmetric(O1
h). Displacement of the atoms

as shown in Figure 1.23(b), removes the center of symmetry (C4v) and imparts a dipole

moment to the unit cell. The distortion in Figure 1.23(b), is just that carried by the

lowest frequency transverse optic (infrared active) phonon [96].

Generally, however, the soft-mode eigenvector is more complicated and when qc 6= 0,

both the magnitude and direction of qc determine the size and shape of the new unit

cell relative to the old. A number of crystals undergo phase transitions which involve

softening of phonon mode at Brillouin zone boundaries. In these cases, the soft phonons

can be either acoustic or optic modes[Figure 1.24(a)]. Because of mixing of eigenvectors,

it is often the case that the distinction between them is not straightforward . One of

the interesting results of a zone boundary soft mode phase transition is that the unit

cell of the low-temperature phase is doubled in one or more directions. In some cases

neighboring unit cells of the high-temperature state develop dipole moments, but as these
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Figure 1.24: Schematic behaviour of (a) zone boundary acoustic and optic soft modes.(b) Atomic
displacements showing doubling of the unit cell and canceling induced dipole moments. [Figures are
taken from Ref. [97]]

are in opposite directions the unit cell at low temperature has no net moment[Figure

1.24(b)] [97]. The best example of a zone boundary phase transition is the cubic to

tetragonal transition in the perovskite SrTiO3 (transition temperature 110 K).

In this context we shall know that, whereas a ferroelectric phase transition is characterized

by softening of a particular zone center phonon mode, in case of incipient ferroelectrics,

the softening of a phonon mode occurs with a decrease in the temperature but never

becomes completely soft down to lowest possible temperatures.
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Quantum Materials 2, 21 (2017).

[18] Patrick Fazekas, Atoms, Ions and Molecules. In: Lecture Notes On Electron Corre-

lation And Magnetism. World Scientific, (1999), pp. 17-74.

[19] D. van der Marel and G. A. Sawatzky, Phys. Rev. B 37, 10674 (1988).

[20] H. A. Jahn and E. Teller, Proc. R. Soc. London A161, 220 (1937).

[21] J.-S. Zhou, J.A. Alonso, J.T. Han, M.T. Fernández-Dı́az,J.-G. Cheng, J.B. Goode-

nough, Journal of Fluorine Chemistry 132, 1117 (2011).

[22] I. I. Mazin, D. I. Khomskii, R. Lengsdorf, J. A. Alonso, W. G. Marshall, R. M.

Ibberson, A. Podlesnyak, M. J. Mart́ınez-Lope, and M. M. Abd-Elmeguid, Phys.

Rev. Lett. 98, 176406 (2007).

[23] D. D. Sarma and S. R. Barman, Electronic Structure of Transition Metal Com-

pounds. In: Spectroscopy of Mott Insulators and Correlated Metals. Springer Series

in Solid-State Sciences, vol 119. Springer, Berlin, Heidelberg (1995).

[24] Patrick Fazekas, Mott Transition and Hubbard Model. In: Lecture Notes On Elec-

tron Correlation And Magnetism. World Scientific, (1999), pp. 147-197.

[25] D. Adler, Solid State Physics 21, 1 (1969).

[26] J. C. Slater, Phys. Rev. 82, 538 (1951).

[27] N. F. Mott, Proc. Phys. Soc. A 62, 416 (1949).

[28] N. F. Mott, Philos. Mag. 6, 287 (1961).

[29] N. F. Mott, Metal-Insulator Transitions, Taylor and Francis, London, (1974).

[30] D.I. Khomskii, in Transition Metal Compounds (Cambridge University Press, Cam-

bridge, (2014), pp. 1-24.

[31] J. Hubbard, Proc. Roy. Soc. A 276, 238 (1963).

[32] J. Hubbard, Proc. Roy. Soc. A 277, 237 (1964).

[33] C. R. Ronda, G. J. Arends and C. Hass, Phys. Rev. B 35, 4038 (1987).



BIBLIOGRAPHY 53

[34] J. Zaanen, G.A. Sawatzky and J. W. Allen, Phys. Rev. Lett. 55, 418 (1985).

[35] D. D. Sarma, J. Solid State Chem. 88, 45 (1990).

[36] S. Nimkar, D. D. Sarma, H. R. Krishnamurthy, and S. Ramasesha, Phys. Rev. B

48, 7355 (1993).

[37] M. Imada, A. Fujimori, and Y. Tokura, Rev. Mod. Phys. 70, 1039 (1998).

[38] S. D. Ha, M. Otaki, R. Jaramillo, A. Podpirka, S. Ramanathan, J. of Solid State

Chem. 190, 233 (2012).

[39] J.B. Torrance, P. Lacorre, C. Asavaroengchai, and R.M. Metzger, Why are some

oxides metallic, while most are insulating, Physica C 182, 351 (1991).

[40] J.B. Torrance, P. Lacorre, A.I. Nazzal, E.J. Ansaldo, and C. Niedermayer, Phy.

Rev. B 45, 8209 (1992).

[41] G. Frand, O. Bohnke, P. Lacorre, J. Fourquet, A. Carre, B. Eid, J. Theobald, and

A. Gire, J. Solid State Chem. 120, 157 (1995).
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2.1 Introduction

Development of quantum mechanics at the beginning of twentieth century was one of the

great scientific advancement to understand and predict material properties. Here the state

of a system is described by a state function or a wave function ψ and all the measurable

properties can be obtained by solving the Schrödinger equation. For example, in case of

Hydrogen atom, the dynamics of the electron and its energy states(hence the electronic

structure of Hydrogen atom) are described with great accuracy in agreement with exper-

imental observations [1]. Knowing the electronic structure of any material system helps

us to understand and predict its properties. Materials are basically collection of atoms,

a system of nuclei and electrons, and the basic interaction between them is electrostatic.

Nuclei are ∼ 1800 times heavier than the electrons and with some approximations can

be treated as classical particles fixed at particular lattice sites. However, the electrons

have to be treated quantum mechanically. Presence of more than one electron and the

repulsive interaction between them make it a many-body problem, and solution of the

many particle Schrödinger equation is a difficult task. Many powerful methods for an im-

proved though approximate solution of the many particle Schrödinger equation have been

developed. These can handle around 100 electrons but are computationally demanding.

So, the exact many-body wave function ψ(r1, r2, · · ··, rN)(N = number of electrons in the

system) remains inaccessible for most real systems. Hence we need some approximations

to solve the many particle Schrödinger equation. This is generally done by reducing the

many particle Schrödinger equation to some effective single particle equations and solving

them. Density functional theory(DFT), as formulated by Kohn, Hohenberg, and Sham in

the 1960’s, is a smart way to solve the many particle Schrödinger equation that reduces

the many-body problem to an effective single particle problem. This was done by consid-

ering the electron density n(r) as a variable and expressing the energy of the system as

a functional of the electron density, E[n(r)]. Determination of the ground state electron

density n0(r) gives the ground state energy E0, as well as the ground state wave function

ψ0 and hence the ground state electronic structure of any system. This is important be-

cause it is kind of solving the many particle Schrödinger equation by finding a function

of just 3 variables, the electron density, rather than a complex function of 3N variables,

the wave function.

We use DFT as implemented within the Vienna ab-initio simulation package (VASP) [2,3]

to calculate the electronic structure and structural properties of the systems considered

as a part of this thesis. DFT has become a standard tool for exploring material properties

and understanding them at the atomic level. It has enhanced our scientific understanding

of various physical problems from different areas of science. It also comes out to be very
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useful in predicting material properties which are challenging to probe experimentally.

For example, properties of materials at very high pressure would be difficult to explore

experimentally due to instrumental limitations. DFT calculations can play an useful

role in probing material properties at these extreme conditions, as shown in the work of

Umemoto, Wentzcovitch, and Allen [4]. In this work they have studied the high pressure

properties of bulk MgSiO3, a silicate mineral that is important in planet formation.

In this chapter, we give a brief introduction of the density functional theory and its for-

mulation as a density functional based approach. We also discuss some technical details

to use DFT in computational physics. The electronic structure calculation of a periodic

solid allows the description in terms of Bloch states [5]. These are delocalized/extended

electronic states which are assigned a quantum number k for the crystal momentum,

together with a band index n. A usual expansion involves basis states which are plane

waves. This is widely used in electronic structure calculations but alternative representa-

tions are also available. The Wannier representation [6–8], which is essentially a real-space

picture of localized orbitals, assigns as quantum numbers the lattice vector R of the unit

cell where the orbital is localized, together with a band-like index n. Wannier functions

can be a powerful tool in the study of the electronic and dielectric properties of mate-

rials and can provide an insightful picture of the nature of chemical bonding, otherwise

missing from the band picture of extended orbitals [9]. We use the interface of VASP

to WANNIER90 [10–12] to map the Bloch states onto Wannier functions, localized on

the respective atoms via a unitary transformation. We do this to get a tight binding

representation of the Hamiltonian in the basis of the maximally localized Wannier func-

tions and calculate bonding energy of specific inter-atomic bonds. So, we also give a brief

introduction of Wannier functions and its properties.

2.2 Formulation of Density functional theory

2.2.1 Many body Schrödinger equation and Born-Oppenheimer

Approximation

In quantum mechanics the state of a system is described by a state function or wave

function ψ, and all the measurable properties can be obtained by solving the Schrödinger

equation. The time independent, non-relativistic Schrödinger equation Hψ = Eψ, is

useful to calculate the electronic structure of atoms, molecules and solids. H is the

Hamiltonian operator and ψ is a set of solutions, or eigenstates, of the Hamiltonian. Each

solution, ψn , has an associated real eigenvalue, En, satisfying the eigenvalue equation.
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The detailed structure of the Hamiltonian depends on the physical system under consid-

eration. For simple systems the Schrödinger equation can be solved exactly. For example,

in case of Hydrogen atom, a system of a single electron moving under the potential of a

single proton v(r), the time independent Schrödinger equation becomes:

[
− ~

2

2m
▽2 + v(r)

]
ψ(r) = εψ(r) (2.1)

where m is the mass of the electron and the wave function ψ(r), is a function of a single

electron coordinate r. Solving this equation gives the electronic structure of the Hydrogen

atom and the dynamics of the electron is defined by the time dependent Schrödinger

equation Hψ = i~∂ψ
∂t
, which is not needed further for electronic structure calculations.

For a solid material of our interest, the situation becomes complicated, where multiple

electrons are interacting with multiple nuclei and among themselves. Such a many particle

system is described by the many particle Schrödinger equation:

HΨ(ri;RI) = EΨ(ri;RI) (2.2)

where the wave function Ψ is now a function of N electronic coordinates ri(i=1 to N)

and M nuclear coordinates RI(I=1 to M). The Hamiltonian of the system is a sum of

five terms which in atomic unit reads as:

H = − ~
2

2m

∑

i

▽2
i+

1

2

∑

i 6=j

e2

|ri − rj |
− ~

2

2MI

∑

I

▽2
I+

1

2

∑

I 6=J

ZIZJe
2

|RI −RJ |
−
∑

i,I

ZIe
2

|RI − ri|
(2.3)

where i , j refer to electrons and I , J refer to nuclei. Parameter e andm are the electronic

charge and mass respectively. ZI and MI denote the nuclear charge and mass of the I th

nucleus respectively. This Hamiltonian can be written in a more compact form as:

H = Te(r) + Vee(r) + TN(R) + VNN(R) + VeN(r,R) (2.4)

where R is now indicating a set of nuclear coordinates, and r is the set of electronic coor-

dinates. First two terms, Te(r) and Vee(r) represent the kinetic energy of the electrons and

the electron-electron Coulomb repulsion respectively. The third and fourth terms, TN (R)

and VNN (R) represent the kinetic energy of the nuclei and repulsive interaction between

them respectively. The last term VeN(r,R) represents the interaction between electrons

and nuclei and couples the electronic and nuclear degrees of freedom. This term prevents
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us from separating the total Hamiltonian into nuclear and electronic parts, which would

make the problem a bit simpler and allow us to write the total wave function of the system

as a product of nuclear and electronic terms, Ψ(r;R) = Ψ(r)η(R). The term VeN(r,R) is

large and cannot be neglected. However, if we can assume that the nuclei are fixed and

do not move then we can make the R dependence parametric and can split the problem

into two separate parts. The separation of the nuclei and electrons into two separate

mathematical problems is achieved using Born-Oppenheimer approximation(BOA) [13]

or the Adiabatic approximation. The BOA rests on the fact that atomic nuclei are much

heavier than electrons, each proton or neutron in a nucleus is ∼ 1800 times massive than

an electron. This means that electrons respond much more rapidly to changes in their

surroundings than nuclei can. This allows us to say that the nuclei are nearly fixed with

respect to electron motion and at any instant of time for a particular nuclear configuration

the electrons are at their possible ground state.

Initially, TN(R) can be neglected since TN is much smaller than Te due to larger nuclear

mass, and then for a fixed nuclear configuration {Ra} we have:

Hele
BOA = Te(r) + Vee(r) + VNN(R) + VeN(r,Ra) (2.5)

as the electronic Hamiltonian after BOA such that,

Hele
BOAΨ(r;Ra) = EeleΨ(r;Ra) (2.6)

gives the electronic wave function Ψ(r;Ra) and energy Eele(Ra) , which now depends on

R parametrically. Generally VNN(R) is neglected in Equation (2.5), since in this case R

is just a parameter so that VNN (R) is just a constant and shifts the eigenvalues only by

some constant amount. In that case we can write Hele
BOA as,

Hele
BOA = Te(r) + Vee(r) + VeN(r,Ra) (2.7)

So, for any solid system the first step would be to solve Equation (2.7), that describes the

electrons for fixed positions of the atomic nuclei. For a given set of electrons moving in the

field of a set of nuclei, we get the lowest energy state or the ground state of the electrons.

If we have M nuclei at positions (R1,R2, · · ··,RM) then we can express the ground-state

electronic energy, Eele
0 , as a function of the positions of these nuclei, Eele

0 (R1,R2, · · ··,RM).

This function is known as the adiabatic potential energy surface of the atoms. Once we
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are able to calculate this potential energy surface we can know how does the energy of

the material change as we move the atoms around [14].

But even after BOA the simplest possible electronic Hamiltonian[Equation (2.7)] for a

fixed nuclear configuration {Ra}, is not easy to solve. The term in the Hamiltonian

defining the electron-electron interactions Vee(r), is the most critical one from the point

of view of directly solving the equation. If this term was not there, that means for a

non-interacting many electron system the equation reduces to a set of N independent

single particle equations of the form,

hiϕ(ri) = εϕ(ri)[i = 1, 2, · · ··, N ] (2.8)

where N is the number of electrons in the system and hi describes the kinetic and poten-

tial energies of the ith electron. Solution of each such single particle equation gives the

same set of single electron wave functions ϕn(r) with energies εn. Then the ground state

of the N electron system is simply expressed in terms of some simple or complex product

of the N lowest energy wave functions ϕ1(r1), ϕ2(r2), ..... ,ϕN (rN ) associated with the

1st, 2nd, .... ,N th electron respectively. In band theory for periodic solid systems, the same

approach is followed and the single electron states are called Bloch states [5]. But due to

the presence of the electron-electron interaction term, individual electron wave function,

ϕi(ri), associated with the ith electron, could not be found without simultaneously know-

ing the wave functions associated with all the other electrons in the system. This means,

the Schrödinger equation is a many-body problem and we have to make some additional

approximations to reduce it to an effective single particle problem. Various approaches

were taken in this regard. Hartree-Fock (HF) and Density Functional theory (DFT) are

two successful theories in which the two body interaction term is replaced by an effective

single body potential. Next we are going to discuss the basic assumptions taken within

these two approach to solve the electronic Hamiltonian after BOA[Equation (2.7)].

2.2.2 Hartree-Fock(HF) Theory : A wave function based ap-

proach

Hartree-Fock approach is an approximate way to solve the simplest form of the electronic

Hamiltonian for an N electron system after BOA[Equation (2.7)]. We can write Equation

(2.7) as a sum of two terms gives as:
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Hele
BOA = − ~

2

2m

∑

i

▽2
i +

1

2

∑

i 6=j

e2

|ri − rj|
−
∑

i,I

ZIe
2

|RI − ri|
(2.9)

=
∑

i

(
− ~

2

2m
▽2
i −
∑

I

ZIe
2

|RI − ri|

)
+

1

2

∑

i 6=j

e2

|ri − rj|
(2.10)

=
∑

i

(Ti + Vion(ri)) +
1

2

∑

i 6=j

e2

|ri − rj|
(2.11)

=
∑

i

hi + Vee(r) (2.12)

Here the main objective is to calculate the full electron wave function corresponding to

the ground state of the above Hamiltonian. Now, as the electrons are fermions, the

N electron wave function must satisfy the Pauli exclusion principle that prohibits two

electrons with the same spin at the same spatial position. Mathematically, the many

electron wave function must be anti-symmetric with respect to position/spin exchange

between two electrons.

Now if we consider a system of N non-interacting electrons, we can exclude the electron-

electron interaction term Vee(r) and the problem reduces to solving N single particle

equations of the form:

hχ(x) = εχ(x) (2.13)

Where, h = T + Vion(r), is the Hamiltonian for a single electron under the potential of

ion cores Vion(r). The eigenfunctions χ, defined by this equation are called spin orbitals

and x is the space-spin coordinate. x = {r,σ} defines the position as well as spin state(up

or down) of any single electron. Solution of each such single particle equation gives the

same set of single electron wave functions χn(x)(n = 1, 2, · · ··, N). The spin orbitals are

ordered in a way so that the orbital with n = 1 has the lowest energy, the orbital with

n = 2 has the next lowest possible energy, and so on. Then the ground state of the

N electron system may be expressed as a simple product of the N lowest energy wave

functions χ1(x1), χ2(x2), ..... ,χN(xN ) associated with the 1st, 2nd, .... ,N th electron

respectively. This approximation is called a Hartree product [15] and the energy of the

ground state is the sum of the considered N spin orbital energies, E0 = ε1+ε2+ · · · ·+εN .
Along with its simplicity, the Hartree product has a serious drawback. It does not satisfy

the antisymmetry principle. Fock in 1930 introduced a better approximation to the wave

function by using a Slater determinant [16]. This is called Hartree-Fock approximation
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[17]. In the Hartree-Fock approximation, the N -electron wave function is formed by

expressing the overall wave function as the determinant of a matrix of single-electron

wave functions so that it satisfies the antisymmetry principle.

ΨHF (x1,x2, · · · · xN) =
1√
N !

∣∣∣∣∣∣∣∣∣∣

χ1 (x1) χ1 (x2) · · · χ1 (xN)

χ2 (x1) χ2 (x2) · · · χ2 (xN)
...

...
. . .

...

χN (x1) χN (x2) · · · χN (xN)

∣∣∣∣∣∣∣∣∣∣

(2.14)

This has a lot of advantages over the simple Hartree product. It vanishes if two electrons

have the same coordinates or if two of the one-electron wave functions are the same. It

changes sign on coordinate exchange. This means that the Slater determinant satisfies

Pauli exclusion principle. Also, it does not distinguish between electrons and we cannot

say which electron is in which single particle state. This is consistent with the strange

results of quantum mechanics for identical particles.

Now let us see how the electron-electron interaction term Vee(r) is approximated using

Slater determinant states to reduce the many-body problem to an effective single particle

problem. We start with the fact that Hartree-Fock wave functions will have the form of

a Slater determinant which are normalized, and the electronic energy will be given by:

Eele
HF = 〈ΨHF |Hele

BOA|ΨHF 〉 = 〈ΨHF |(
∑

i

hi)|ΨHF 〉+ 〈ΨHF |Vee(r)|ΨHF 〉

=
∑

i

εi +

{∑

ij

Cij −
∑

ij

Jij

} (2.15)

After some rigorous mathematical steps which are not presented here, we can get the

expressions for each of the terms in the above equation. εi is given as:

εi = 〈χi|h|χi〉 =
∫
χ∗
i (x)

[
− ~

2

2m
▽2 +Vion(r)

]
χi(x)dx (2.16)

representing the energy of a non-interacting electron with spin orbital χi. Cij and Jij are

called Coulomb integral and exchange integral respectively and are given by:

Cij =
e2

2

∫ ∫
χ∗
i (x)χ

∗
j (x

′)
1

|r− r′|χi(x)χj(x
′)dxdx′ (2.17)

Jij =
e2

2

∫ ∫
χ∗
i (x)χ

∗
j (x

′)
1

|r− r′|χj(x)χi(x
′)dxdx′ (2.18)
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The exchange term given by Equation (2.18) is non zero only for like spins i.e. for σ = σ′.

Now for symmetric energy expressions, we can apply the variational theorem, which states

that for any arbitrary Slater determinant state Ψ, the energy is always an upper bound

to the true ground state energy of the system. Hence, we can obtain better approximate

wave functions Ψ, by varying their parameters(spin orbitals χ) with the condition that

the energy gets minimized. The electronic energy Eele
HF , is now a functional of the spin

orbitals, Eele
HF [{χi}], and we can vary the spin orbitals for the lowest energy within a given

functional space. The corresponding Slater determinant would be the closest to the true

ground state wave function of the system. Hence, Hartree-Fock method determines the

set of spin orbitals giving the lowest energy and gives us the best possible ground state

Slater determinant state. We want to minimize the Hartree-Fock energy Eele
HF [{χi}], with

respect to changes in the spin orbitals χi → χi+ δχi, such that the procedure leaves them

orthonormal. This can be done by Lagrange’s method of undetermined multipliers [18],

where we introduce a functional L given as:

L[{χi}] = Eele
HF [{χi}]−

∑

j

εj

∫
|χj(x)|2dx (2.19)

where εj, are the undetermined Lagrange multipliers. Setting the first variation δL = 0,

and after some mathematical simplification, we obtain the Hartree-Fock equations defining

the orbitals:

[
− ~

2

2m
▽2 +Vion(r)

]
χi(x) +

∑

i 6=j

[∫
|χj(x′)|2 e2

|r− r′|dx
′

]
χi(x)

−
∑

i 6=j

[∫
|χ∗
j (x

′)
e2

|r− r′|χi(x
′)dx′

]
χj(x) = εiχi(x)

(2.20)

where εi is the energy eigenvalue associated with spin orbital χi. The second term in the

Equation (2.20) gives the Coulomb interaction between an electron with spin orbital χi,

and the average charge distribution of the other electrons. This is called the Coulomb

term. We can define a corresponding Coulomb operator Ĉj as:

Ĉj(x) =

∫
|χj(x′)|2 e2

|r− r′|dx
′ (2.21)

giving the average local potential at point r due to the charge distribution of the electron

in spin orbital χj . The third term in Equation (2.20) comes from the antisymmetry
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requirement of the wave function and does not have a simple classical analogue. This

is called the exchange term and we can define a corresponding exchange operator Ĵj in

terms of its action on an arbitrary spin orbital χi as:

Ĵj(x)χi(x) =

[∫
χ∗
j (x

′)
e2

|r− r′|χi(x
′)dx′

]
χj(x) (2.22)

And in terms of these Coulomb and exchange operators, we have the Hartree-Fock single

particle equations as:

[
− ~

2

2m
▽2 +Vion(r) +

∑

j 6=i

Ĉj(x)−
∑

j 6=i

Ĵj(x)

]
χi(x) = εiχi(x) (2.23)

We define,

VH(x) =
∑

j 6=i

Ĉj(x)−
∑

j 6=i

Ĵj(x) (2.24)

as the Hartree potential, which is the average effective potential experienced by an electron

due to the presence of remaining (N − 1) electrons making Hartree-Fock approximation

a mean field approach.

Now we have to solve these single particle Hartree-Fock equations and obtain the N spin

orbitals with lowest energies and then construct the ground state wave function as a Stater

determinant of those N spin orbitals. And the total energy corresponding to the ground

state would be the sum of the considered spin-orbital energies. To solve the single electron

equations in a practical calculation, we need to expand the spin orbitals in a basis set. If

the set of K number of functions φ1(x), φ2(x), · · ··, φK(x) defines the basis set, then we

can approximate the spin orbitals as:

χi(x) =
K∑

j=1

αijφj(x) (2.25)

Hence we only need to find the expansion coefficients, αij , for i = 1, · · ··, N and j =

1, · · ··, K to fully define all the spin orbitals that are used in the HF method. Choosing a

large basis set and functions that are initially similar to the real spin orbitals, improves

the accuracy but with an increased computational cost. Now, to find the spin orbitals

one needs to solve the single electron equations[Equation (2.23)] for which we need to

know the Hartree potential VH . But to define the Hartree potential(VH), we must know
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in turn, the individual spin orbitals associated with all the electrons. To break this loop, a

Hartree-Fock calculation becomes an iterative procedure with the main steps as described

below [14]:

Step 1 : Make an initial estimate of the spin orbitals [Equation (2.25)] by specifying the

expansion coefficients, αij.

Step 2 : From the current estimate of the spin orbitals, define the Hartree potential VH .

Step 3 : Using this Hartree potential VH from step 2, solve the single electron Hartree-

Fock equations for the spin orbitals.

Step 4 : If the spin orbitals found in step 3 are consistent with the orbitals used in step 2

satisfying some convergence criteria, then these are the final solutions to the Hartree-Fock

problem. If not, then a new estimate or update for the spin orbitals must be made and

we then return to step 2.

We are not going to discuss here the details of how to make an initial guess for spin

orbitals, what shall be the convergence criteria and procedure to update the spin orbitals.

But some basic problems associated with such wave function based approach needs to be

discussed. One of the main problem is associated with the dimension of the wave func-

tion. Excluding the spin degrees of freedom, for a system of N electrons the total wave

function is 3N dimensional. For example, the wave function for a nanocluster of 100 Pt

atoms shall require more than 23,000 dimensions [14]. Accuracy of the calculation is an-

other issue which depends on two main factors. (1) How accurately the electron-electron

interaction is treated and (2) how accurately we represent the many electron Schrödinger

wave function. Hartee-Fock method with Slater determinants includes exchange interac-

tion, but this is not the only kind of electron correlation that we need to consider for

good accuracy. Electrons repel each other according to Coulomb’s law. Hartree-Fock

replaces this instantaneous electron-electron repulsion with an average term where each

electron feels the effect of an average electron charge cloud. This introduces an error

in the wave function and the energy. Similarly, to accurately represent the true many

electron Schrödinger wave function, we need infinitely large number of Slater determi-

nants as basis set. But in Hartree-Fock theory we use a single Slater determinant state to

represent the ground state, which is not a good approximation. The hypothetical energy

of N electrons from a HF calculations using an infinitely large basis set, is known as the

Hartree-Fock limit. This energy is not the same as the true ground state energy of the

system and their difference is defined as the electron correlation energy. Hartree-Fock

theory fails for systems where electron correlation is important. For example, Van der

Waals systems where dispersion forces results from instantaneous electron-electron inter-
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actions. Improvements can be made by considering Slater determinants that represents

excited state along with the HF ground state. For example, configuration interaction (CI),

coupled cluster (CC), Møller-Plesset perturbation theory (MP), quadratic configuration

interaction (QCI) approach are among them.

2.2.3 Density Functional Theory : From wave function to elec-

tron density

The N electron wave function Ψ(r1, ····, rN), is an abstract quantity that cannot be directly

observed. The quantity that can be physically measured is the probability density Ψ∗Ψ.

An equivalent quantity that can be physically measured in X-ray diffraction experiments

is the electron density n(r). The spin independent density of an N electron system is

defined as,

n(ri) = N

∫
Ψ∗(r1, · · ·, ri, · · ·, rN)Ψ(r1, · · ·, ri, · · ·, rN )dr1dr2 · ·dr(i−1)dr(i+1) · ·drN (2.26)

The electron density is a function of just 3 spatial variables and contains a large amount

of information that is actually physically observable from the full wave function solution

to the Schrödinger equation, which is a function of 3N coordinates. Like Ψ(r1, · · ··, rN),
n(r) also vanishes at infinity and integrates out to the total number of particles, N in

the system. If we are able to express the total energy E, of the electron system as a

functional of the electron density n(r), E[n(r)], and apply variational method to determine

the ground state electron density n0(r), corresponding to a minimum in E[n(r)], then we

can in-turn get all necessary information of the system including the ground state wave

function Ψ0. This is important because we can get the ground state solution for the

electronic Hamiltonian[Equation (2.9)] by varying a function of 3 spatial variables for any

electron system. A theory for electronic structure calculation based on the electron density

n(r), that was there since 1920 was the Thomas-Fermi(TF) theory [19,20]. Thomas-Fermi

theory gives a rough approximation to the exact solution of the many-electron Schrödinger

equation. This was quite useful for describing some qualitative trends like total energies

of atoms, but in case of chemistry and materials science, which involve valence electrons,

it was of almost no use. For example it did not lead to any chemical binding [21]. As

stated by Walter Kohn in his Noble Lecture [21], it was the suggestion of the hypothesis,

that a knowledge of the ground-state density of n(r), for any electronic system (with
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or without interactions) uniquely determines the system, became the starting point of

modern density functional theory(DFT) as formulated by Kohn, Hohenberg, and Sham.

The entire field of density functional theory rests on two fundamental mathematical the-

orems proved by Hohenberg and Kohn [22] and the derivation of a set of equations by

Kohn and Sham [23] in the mid 1960’s.

Hohenberg Kohn Theorem 1 : The basic statement of the theorem is that, The

ground state density n0(r) of a bound system of interacting electrons in some external

potential Vext(r) determines this potential uniquely [21, 22].

Proof : Let n(r), be the ground state density of N electrons in the external potential

Vext(r), corresponding to the ground state wave function Ψ, and the energy E, of the

Hamiltonian, H = Te + Vee + Vext. Te and Vee are the kinetic and electron-electron inter-

action energy operators respectively[see Equations (2.3) and (2.4) for detail expression of

Te and Vee]. Let us consider V′
ext, a different external potential, which also corresponds

to the same ground state density n(r). This will result in a different Hamiltonian H ′ and

corresponding ground state wave functions Ψ′ . Now,

E = 〈Ψ|H|Ψ〉 (2.27)

= 〈Ψ|Te + Vee|Ψ〉+
∫
n(r)Vext(r)d

3r (2.28)

and

E ′ = 〈Ψ′|H ′|Ψ′〉 (2.29)

= 〈Ψ′|Te + Vee|Ψ′〉+
∫
n(r)V ′

ext(r)d
3r (2.30)

Since Ψ′ is not the corresponding ground state of H ,

E = 〈Ψ|H|Ψ〉 (2.31)

< 〈Ψ′|H|Ψ′〉 = 〈Ψ′|H ′|Ψ′〉+ 〈Ψ′|[H −H ′]|Ψ′〉 (2.32)

< E ′ +

∫
n(r)[Vext(r)− V ′

ext(r)]d
3r (2.33)

Similarly,
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E ′ < E +

∫
n(r)[V ′

ext(r)− Vext(r)]d
3r (2.34)

Adding both the above Equations (2.33) and (2.34) we get,

(E + E ′) < (E ′ + E) (2.35)

This contradictory result proves the first theorem. Now as Vext(r) determines H , so

another way to restate this result is that the ground state energy E0[n(r)] and wave

function Ψ0[n(r)] from Schrödinger’s equation are unique functional of the electron density

n(r). And the ground state electron density n0(r) in an external potential uniquely

determines all properties, including the energy and wave function, of the ground state.

Hohenberg Kohn Theorem 2 : The second theorem states that, the ground state

energy can be obtained variationally: The exact ground state energy corresponding to the

full solution of the Schrödinger equation is the global minimum value of the functional

E[n(r)]. And the electron density that minimizes the energy of the overall functional is

the true ground state electron density. So, if n0(r) is the ground state electron density,

then this implies that, for any density n′(r), other than ground state density,

E[n′(r)] ≥ E[n0(r)] (2.36)

Kohn-Sham Formulation :

For the Hamiltonian, H = Te + Vee + Vext of N interacting electrons in the external

potential Vext, the total energy functional can be written as,

E[n(r)] = F [n(r)] +

∫
n(r)Vext(r)d

3r (2.37)

where F [n(r)] = T [n(r)]+Eee[n(r)], is an unknown, but otherwise universal functional of

the electron density n(r) only. F [n(r)] in the above equation represents the sum of kinetic

energy and the electron-electron interaction energy and is called the Hohenberg-Kohn

functional. The ground state energy can be obtained by minimizing this energy functional,

subject to the constraint that the number of electrons N is conserved(
∫
n(r)dr = N),

which leads to :
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δ

δn(r)

[
F [n(r)] +

∫
n(r)Vext(r)d

3r − µL

(∫
n(r)d3r −N

)]
= 0 (2.38)

with the Euler equation :

µL =
δF [n(r)]

δn(r)
+ Vext(r) (2.39)

where, µL is the Lagrange multiplier associated with the constraint of constant N . The

main problem is that, Hohenberg-Kohn theorems does not provide any actual form of the

energy functional. Practically, this is being done with approximate forms. An approach

to solve this problem was proposed by Kohn and Sham [23] and the idea was to replace the

interacting N -electrons system by a hypothetical system of N non-interacting electrons

whose ground state density coincides with that of the interacting system. The approach

was to write the energy functional described in the Hohenberg-Kohn theorems in terms

of the single electron wave functions, φi(r). Then the electron density n(r) of N electron

system can be written as,

n(r) = 2
N∑

i=1

φ⋆i (r)φi(r) (2.40)

The factor of 2 comes because we are treating the problem without spin degrees of freedom

and each orbital φi, can be occupied by two electrons with opposite spins. The total wave

function ΨKS, for this type of system is exactly given by a Slater determinant of single

particle orbitals φi(ri). Then the functional F [n(r)] can be expressed as a sum of three

terms as:

F [n(r)] = T0[n(r)] + EH [n(r)] + EXC [n(r)] (2.41)

where,

T0[n(r)] =
∑

i

〈φi| −
~
2

2m
▽2|φi〉 (2.42)
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EH [n(r)] =
e2

2

∫ ∫
n(r)

1

|r− r′|n(r
′)d3rd3r′ (2.43)

=
e2

2

∑

i,j

〈φiφj|
1

|r− r′| |φiφj〉 (2.44)

T0[n(r)] is the kinetic energy of a non-interacting electron gas of density n(r) and

EH [n(r)] is the classical electron-electron interaction energy(Hartree energy) of the elec-

trons. EXC [n(r)] is the exchange-correlation energy, which contains the difference between

the exact and non-interacting kinetic energies and also the non-classical contributions of

the electron-electron interactions such as exchange energy. This is expressed as:

EXC [n(r)] = T [n(r)]− T0[n(r)] + Eee[n(r)]− EH [n(r)] (2.45)

Minimization of the total energy functional from the Kohn-Sham formulation, by applying

variational principle[Equation (2.38)] leads to the self consistent Kohn-Sham equations

given as:

[− ~
2

2m
▽2 + Vext(r) + VH(r) + VXC(r)]φi(r) = ǫiφi(r) (2.46)

For the electrons under the potential of nuclei, Vext(r) corresponds to the Vion(r) like in

the Hartree-Fock single particle equations [Equation (2.23)]. VH(r) is the classical part of

the Hartree potential given as,

VH(r) =
δEH [n(r)]

δn(r)
(2.47)

= e2
∫

n(r′)

|r− r′|d
3r′ (2.48)

This potential describes the Coulomb repulsion between the electron in any one of the

Kohn-Sham orbital and the total electron density defined by all electrons in the system.

So, a part of VH involves a coulomb interaction between the electron and itself. The self-

interaction is not physical, and the correction for this is also considered in the unknown

exchange-correlation potential VXC given as,



76 CHAPTER 2. THEORETICAL CONCEPTS

VXC(r) =
δEXC [n(r)]

δn(r)
(2.49)

One crucial point to remember is that, the ground state density obtained by solving

the Kohn-Sham equations for an alternative non-interacting Kohn-Sham system, is the

same as the exact ground state density. But the single particle wave functions φi are

solely mathematical functions with no physical meaning associated to them. To get the

single particle wave functions φi, we need to solve the Kohn-Sham equations[Equation

(2.46)]. Now to solve the Kohn-Sham equations(forgetting for now that the function VXC

is unknown) we need to know the Hartree potential. And to define the Hartree potential

we need to know the electron density which in-turn requires all the single electron wave

functions φi. So, again to break this loop, and calculate the ground state density the

problem is usually treated in an iterative way with the following steps [14] :

Step 1 : Define an initial, trial electron density, n(r).

Step 2 : Solve the Kohn-Sham equations defined using the trial electron density to find

the single-particle wave functions, φi.

Step 3 : Calculate the electron density defined by the Kohn-Sham single-particle wave

functions from Step 2, nKS(r) = 2
∑

i φ
⋆
i (r)φi(r).

Step 4 : Compare the calculated electron density, nKS(r) , with the electron density

used in solving the Kohn-Sham equations, n(r). If the two densities are consistent and

satisfy some convergence criteria, then this is the ground state electron density and we

get the ground state energy. If the two densities are different, n(r) must be updated in

some way. Once this is done, the process begins again from step 2.

In the above discussion of solving the Kohn-Sham equations, we ignored one important

fact that the form of the function VXC was not known. To define the mathematical

problem(Kohn-Sham equations) properly, we need to know the form of the exchange-

correlation potential VXC(r). For this, approximate forms of VXC(r) are used. In the next

section we give a brief overview of some of the form of EXC [n(r)] most widely used in

DFT calculations that leads to VXC(r).
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2.2.4 Approximations for the exchange - correlation Energy

EXC[n(r)]

Here we try to give a brief and general picture of how these approximations are done.

For details we refer to the main articles that has been mentioned in the text. If Ψ is

the ground state wave function of the electronic Hamiltonian[Equation (2.9)] for the N

electron system, then the expectation value for the electron-electron interaction Vee is

given as,

〈Ψ|Vee|Ψ〉 = e2

2

∫ ∫
P (r, r′)

|r− r′| d
3rd3r′ (2.50)

Where, P (r, r′) is the pair-density giving the probability of simultaneously finding an

electron at the point r within volume element d3r, and another electron at r′ in volume

element d3r′. For non-interacting electrons there is no correlation and the probability of

finding a pair of electrons at the points r and r′ is simply the product of the densities at

the respective points as,

P claccical(r, r′) = n(r)n(r′) (2.51)

leading to the classical Hartree energy EH [Equation (2.43)]. But quantum mechanical

effect of exchange and correlation interactions reduce the classical value of the electron

density at r due to the presence of the second electron at r′. Therefore each electron

creates a depletion, or hole, of electron density around itself as a direct consequence of

exchange-correlation effects. Taking account of the hole, the pair-density can be written

as,

PQM(r, r′) = n(r)n(r′) + n(r)n
XC

(r, r′) (2.52)

n
XC

(r, r′) is called the exchange-correlation hole density, taking into account the quantum

mechanical effects. The exchange-correlation energy functional, EXC [n(r)], can be defined

as [24],
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EXC [n(r)] =

∫
n(r)ε

XC
(r)d3r (2.53)

where,

ε
XC

(r) =
e2

2

∫
n

XC
(r, r′)

|r− r′| d3r′ (2.54)

is the exchange-correlation energy per particle. The exchange-correlation potential(VXC),

then follows from Equation (2.49). The functionals can be characterized by the way in

which the density surrounding each electron is sampled in order to construct ε
XC

(r).

Local Density Approximation(LDA) :

Local density approximation(LDA) can be called the mother of all approximations pro-

posed by Hohenberg and Kohn in their original DFT paper [22]. The LDA approximates

the true exchange-correlation energy of a system at each point in space, by the exchange-

correlation energy of a homogeneous electron gas(HEG) of the same density observed at

that point. The homogeneous electron gas is the only system for which the form of the

exchange-correlation energy is known precisely. LDA only uses the local density, and the

exchange-correlation energy functional is written as,

ELDA
XC [n(r)] =

∫
n(r)ε

HEG

XC
(r)d3r (2.55)

where ε
HEG

XC
(r), is the exchange-correlation energy density corresponding to a homogeneous

electron gas of density n(r). ε
HEG

XC
(r) can be separated into exchange and correlation parts

as,

ε
HEG

XC
(r) = ε

HEG

X
(r) + ε

HEG

C
(r). (2.56)

This exchange part ε
HEG

X
(r) was derived analytically by Dirac and is known for a ho-

mogeneous electron gas [25]. However, the analytic expressions for ε
HEG

C
in case of the

homogeneous electron gas is only known in two limits of high [26,27] and low [28] electron

densities.

Generalized Gradient Approximation (GGA) :

LDA is the simplest approximation that is not appropriate for real systems where the

electron density is not uniform due to formation of spatially directed bonds. So, the next

approximation is the generalized gradient approximation (GGA). To consider the spatial
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variation in the electron density, the exchange-correlation energy density is expressed in

terms of both the local electron density as well as the gradient of the electron density.

To represent this fact, we can express the exchange-correlation functional under GGA

approximation as,

EGGA
XC [n(r)] =

∫
n(r)ε

HEG

XC
[n(r), |∇n(r)|]d3r (2.57)

Most important work in developing GGA functional was initiated by Perdew and co-

workers [29]. Now the information of the gradient of the electron density can be included

in various ways leading to large number distinct GGA functionals. Some of the most

popular forms are Perdew and Wang (PW91) [30], Becke-Lee-Yang-Par (B-LYP) [31] and

Perdew, Burke and Enzerhof (PBE) [32] functionals.

Meta-Generalized Gradient Approximation(MGGA) :

The next type of approximations that follows after GGA is the meta-generalized gradient

approximation(MGGA). MGGA functionals include information from n(r), ∇n(r) and

▽2n(r). The kinetic energy density corresponding to the Kohn-Sham orbitals,

τ(r) =
1

2

N∑

i=1

|∇φi(r)|2 (2.58)

is equivalent to the Laplacian of the electron density, and thus may be used in meta-GGA

functionals instead of ▽2n(r). The Tao-Perdew-Staroverov-Scuseria (TPSS) functional

[33] is an example of meta-GGA functional.

Hybrid Functionals :

Hybrid functionals include contributions from the exact exchange(Hartree-Fock) energy

with a GGA functional having a general form,

EHybrid
XC = α(EHF

X −EGGA
X ) + EGGA

XC (2.59)

where EHF
X is the Hartree-Fock exchange energy expression as given in Equation 2.18 with

Kohn-Sham orbitals used in place of spin orbitals. One of the feature of this quantity

is that it is non-local. To evaluate it at a particular point of the configuration space

the value of φi must be known at all points. The coefficient, α, determines the amount

of exact-exchange mixing which is fitted semi-empirically. HSE functionals [34] named

after J. Heyd, G. E. Scuseria, and M. Ernzerhof is one such example. These functionals

are expected to be more accurate while studying the strongly correlated electron systems
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due to their large self-interaction correction but are computationally expensive due to the

non-local nature.

2.3 Numerical Approximations for DFT Calculations

Using DFT we are trying to calculate the electronic structure of a collection of atoms.

DFT basically defines a mathematical problem for any such physical system with an

approximate form of the exchange-correlation functional. The mathematical problem is

to solve a set of mathematical equations(Kohn-Sham equations) in an iterative manner

to get the ground state electron density. The problem cannot be solved analytically but

numerically with a series of numerical approximations. For example integrations are done

considering a finite number of grid points, infinite sums are truncated to finite ones. Due

to such approximations errors may enter. In this regard, a well converged solution is the

one which is very close to the exact solution of the mathematical problem defined by

DFT. Here we make a brief discussion on such numerical approximations.

2.3.1 Plane Wave Basis and Energy cutoff :

To numerically solve the Kohn-Sham equations we first need a proper basis set to expand

the single particle orbitals and represent them with the expansion coefficients. Here we are

interested in the electronic structure of crystalline materials with periodic arrangements

of atoms. The entire crystal can be generated from a periodic repetition of a basic unit

called the unit cell defined by three unit vectors, a1, a2, a3. The single particle electronic

states for the non-interacting electrons in periodic system are called Bloch states [5] with

the form :

φk(r) = eik·ruk(r) (2.60)

where, uk(r) is periodic in space with periodicity of the crystal, i.e. uk(r+ n1a1 + n2a2 +

n3a3) = uk(r) for any integer values of n1, n2, n3. So, Bloch states are basically plane

waves modified by a periodic function uk(r). Periodicity of uk(r) allows it to be expanded

in terms of plane waves as,
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uk(r) =
∑

G

CGe
iG·r (2.61)

where, G = m1b1+m2b2+m3b3, is a reciprocal lattice vector defined in terms of reciprocal

space unit vectors b1, b2, b3(which can be expressed in terms of real space unit vectors

a1, a2, a3 using the standard definition) for any integer values of m1, m2, m3. So, now

the Bloch states are given as,

φk(r) =
∑

G

CG+ke
i(G+k)·r (2.62)

Figure 2.1: Total energy per atom of fcc Cu using a 10×10×10 k-points grid as a function of the cutoff
energy Ecut

This is an infinite sum of plane waves with kinetic energies E = ~2

2m
|k+G|2. For a

periodic system, such states are reasonable to choose as the single electron orbitals φi,

in the Kohn-Sham equations and we can use plane waves as the basis set to expand the

Kohn-Sham orbitals. This is why such DFT calculations are sometimes referred to as

plane wave calculations. The problem is that Equation (2.62) involves a summation over

an infinite number of possible values of G. For practical calculations we need to truncate

this infinite sum to a finite one. For this we consider a cutoff energy defined as,

Ecut =
~
2

2m
G2
cut (2.63)
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so that, the plane waves with kinetic energy lower than the cutoff energy are included

in the basis. The error introduced in this approximation can be minimized by increasing

Ecut till the total energy of the system converges showing no significant variation with

any further change in Ecut.

Figure 2.1 shows the convergence of the total energy per atom( using DFT as implemented

in VASP) of fcc Cu as a function of Ecut. GGA was considered for the exchange-correlation

functional. A 10×10×10 Monkhorst-Pack k-mesh was used for performing the k-space

integrations(This is discussed in details in the next section). We can see from Figure 2.1

that, changing value of Ecut from 300 to 320 eV, the total energy change per atom is less

than 1 meV. Hence we can use Ecut = 300eV for the above calculation for a well converged

result.

2.3.2 Performing K-Space Integrations :

In any practical DFT calculation, a large amount of time is spent in evaluating k-space

integrals in the Brillouin zone with the form [14],

g =
Vcell
(2π)3

∫

BZ

g(k)dk (2.64)

Where Vcell, is the volume of the unit cell of the crystal. Numerically integrals are eval-

uated by evaluating the value of the function g(k), at some finite set of k-points within

the Brillouin zone and summing them with proper weight. Such method give more and

more accurate results as we increase the number of k-points and the numerical method

may converge to the exact result of the integral.

The question is how to choose the k-points to evaluate such integrals efficiently. The

most widely used method of considering equally spaced points in the Brillouin zone was

developed by Monkhorst and Pack [35]. For example, for a cubic or almost cubic unit

cell the reciprocal unit cell is also cubic and we can consider same number of k-points

along each k-space unit vector bi. If N number of k-points are considered along each

direction then the calculation is leveled as N × N × N k-points calculation. To test the

convergence, the way is to increase the value of N till there is no significant variation in

the total energy with any further change in N . Figure 2.2 shows the convergence of the

total energy( using DFT as implemented in VASP) of fcc Cu as a function of N . GGA

was considered for exchange-correlation functional with a converged Ecut value of 300 eV.
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Figure 2.2: Total energy per atom for fcc Cu as a function of N implying a N × N × N k-points
calculation

Changing the value of N from 7 to 8, the total energy change per atom is less than 1

meV. Hence we can use 7× 7× 7 or 8× 8× 8 k-points grid in the above calculation for a

well converged result.

2.3.3 Frozen core approximation and Pseudopotential :

In any real material the electrons of the atoms that are chemically important are the

valence electrons because they take part in bonding. The core electrons that are tightly

attached to the nucleus remain more or less inert. Also the kinetic energy of the core

electrons are much higher than the valence electrons and their wave function are highly

oscillating on short length scale. As a result we need large energy cutoff value for a plane

wave basis set to represent them. So, if we are able to approximate the properties of the

core electrons then we can reduce the computation cost by reducing the number of plane

waves in the basis set.

The popular approach to treat the core electrons is to use pseudopotentials. A pseu-

dopotential replaces the electron density from the core electrons with a smoothed density

chosen to match various important physical and mathematical properties of the true ion

core. This is the frozen core approximation. In this approximation, if |ψc〉 and |ψv〉 rep-
resent the quantum states for core electrons and the valence electrons respectively then



84 CHAPTER 2. THEORETICAL CONCEPTS

one can construct smooth valence states |φv〉 orthogonal to |ψc〉 as [36],

|φv〉 = |ψv〉+
∑

c

αcψ
c(r) (2.65)

where αc can be determined from the orthogonality condition αc = 〈ψc|φv〉. The pseudo

wave functions satisfies the modified Schrödinger equation:

[
H +

∑

c

(ǫv − ǫc)|ψc〉〈ψc|
]
|φv〉 = ǫv|φv〉 (2.66)

Figure 2.3: Schematic diagram of the Pseudopotential V PS(r) and pseudo-wavefunction φ(r). The
left figure shows valence wave function ψ(r) and Coulomb potential V Coul(r). In the right figure, rc
represents the cutoff radius beyond which the wave function and the potential are not affected.(Taken
from, Atomic and Electronic Structure of Solids, E. Kaxiras, Cambridge University Press [37])

So, we can construct a Pseudo-Hamiltonian,

HPH =

[
H +

∑

c

(ǫv − ǫc)|ψc〉〈ψc|
]

(2.67)

with the same eigenvalues as the original Hamiltonian H , but with a smoother wave

function. The corresponding potential,
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V PP = V +
∑

c

(ǫv − ǫc)|ψc〉〈ψc| (2.68)

is called pseudo-potential, where V is the nuclear potential in H . The second term is a

correction term and repulsive in nature as ǫv > ǫc, indicating that the valence electrons

experience a net repulsive force due to the core electrons. Figure 2.3 schematically illus-

trates the pseudo-potential approach. Beyond the core region i.e. above a cutoff radius,

rc, pseudo-wavefunctions and pseudopotentials are identical to the all electron wave func-

tions and potential respectively, while in the core region (within rc), a weaker potential

will be experienced by this new set of valence states.

In DFT calculations any pseudopotential for an atom define a minimum cutoff energy

that should be used. Pseudopotentials requiring high cutoff energies are said to be hard,

while pseudopotentials with low cutoff energies are called soft, which are computationally

efficient. There are also ultrasoft pseudopotential(USPP) [38] that require very low cutoff

energy.

2.3.4 Projector Augmented Wave(PAW) method :

One disadvantage of using USPPs is that the construction of the pseudopotential for

each atom requires a number of empirical parameters to be specified. Current DFT codes

typically only include USPPs that have been carefully developed and tested, but they do in

some cases include multiple USPPs with varying degrees of softness for some elements [14].

Another frozen core approach that avoids some of the disadvantages of USPPs is the

projector augmented-wave(PAW) method originally introduced by Blöchl [39] and later

adapted for plane-wave calculations by Kresse and Joubert [40]. In such approximation,

an all electron wave function is constructed, with which all integrals are calculated as

a combination of smooth functions extending throughout space and contribution from

the localized muffin tin orbitals [41, 42]. Hence the total wave function in this case is a

combination of valence state wave functions ψ̃vi (r) and a linear transformation function

relating the all-electron valence functions ψvj (r) to ψ̃
v
i (r) which is given as,

ψvj (r) = ψ̃vj (r) +
∑

i

(|φi〉 − ˜|φi〉)〈p̃i|φ̃i〉 (2.69)
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In the above equation, index i is for the atomic site R, |p̃i〉 are the projector functions

for localized pseudo partial wave which satisfy the orthogonality condition, 〈p̃i|φ̃j〉 = δi,j.

Within this formalism, the all electron charge density can be derived from Equation (2.69)

as,

n(r) = ñ(r) + n1(r)− ñ1(r), (2.70)

where,

ñ(r) =
∑

i

fi|ψ̃i(r)|2 (2.71)

n1(r) =
∑

i

fi
∑

j,k

〈ψ̃i|p̃j〉φj(r)φk(r)〈p̃k|ψ̃i〉 (2.72)

ñ1(r) =
∑

i

fi
∑

j,k

〈ψ̃i|p̃j〉φ̃j(r)φ̃k(r)〈p̃k|ψ̃i〉 (2.73)

In the above expressions, fi’s represent the occupancies of the eigenstates ψ̃i, ñ(r) is the

pseudo-charge density and is evaluated from the pseudo-wavefunctions with plane wave

basis. n1(r) and ñ1(r) are the on-site charge densities localized within the augmented

sphere around each atom. Total energy of the system when calculated from these charge

densities can also be divided into three parts.

2.4 Introduction to Wannier Functions

After electronic structure calculation for a periodic solid, the state of the system is de-

scribed in terms of band states/Bloch states [5]. These are delocalized/extended electronic

states which are assigned a quantum number k for the crystal momentum, together with

a band index n. This is widely used in electronic structure calculations but alternate

representations are also available. The Wannier representation [6–8], which is essentially

a real-space picture of localized orbitals, assigns as quantum numbers, the lattice vec-

tor R of the unit cell where the orbital is localized, together with a band-like index n.

Wannier functions can be a powerful tool in the study of the electronic and dielectric

properties of materials and can provide an insightful picture of the nature of chemical

bonding, otherwise missing from the band picture of extended orbitals [9].
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We start with the fact that, single electronic states for the non-interacting electrons in

periodic system are called Bloch states [5] with the form :

Φnk(r) = eik·runk(r) (2.74)

n is the band index, unk(r) is periodic in space with periodicity of the crystal, i.e. unk(r+

R) = unk(r) for any lattice vector R = n1a1+n2a2+n3a3. Here we do not know the exact

form of Φnk(r) due to the unknown function unk(r). Now in a Tight binding approximation

the crystal is described as collection of weakly interacting atoms so that there is negligible

overlap of the valence electrons. Hence the atomic description is not completely irrelevant.

Then we can express Φnk(r) in terms of the atomic wave functions ψn(r), which are

solutions of the atomic Hamiltonian[Hatψn(r) = εnψn(r)] as linear combination of atomic

orbitals located at the lattice points R :

Φnk(r) =
∑

R

eik·Rψn(r−R) (2.75)

ψn(r−R) is the nth atomic orbital at lattice point R. Such expansion satisfy the Bloch

condition.

Φnk(r+R) =
∑

R′

eik·R
′

ψn(r+R−R′) (2.76)

= eik·R[
∑

R′

eik·(R
′−R)ψn(r− (R′ −R)] (2.77)

= eik·RΦnk(r) (2.78)

The energy bands that we get in this way show almost no dispersion with k due to the

crude way of approximating the atomic orbitals as basis. The solution is to introduce

functions φn(r) that are not necessarily atomic orbitals but can be derived from a linear

combination of atomic orbitals as,

φn(r) =
∑

m

bmψm(r) (2.79)
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Where different type of combinations give rise to different type of such functions. In terms

of these functions the Bloch states are represented as,

Φnk(r) =
∑

R

eik·Rφn(r−R) (2.80)

This functions are called Wannier functions, which are the Fourier coefficients of the

inversion formula and are expressed in terms of the Bloch states Φmk as,

φn(r−R) =
V

(2π)3

∫

BZ

[∑

m

Uk
mnΦmk(r)

]
e−ik·Rdk, (2.81)

Such Wannier functions can be defined for any band. Unlike atomic functions ψn(r), the

Wannier functions φn(r−R) at different lattice site and with different band index are

orthogonal. The Wannier functions φn(r−R) for all n and R form a complete orthogonal

set to describe the Bloch states. They offer an alternative localized basis set for exact

description of the independent electron levels.

In the Equation (2.81), V is volume of the unit cell and integration is over the whole Bril-

louin zone. Uk is the unitary matrix which is used to mix the Bloch states at each k point

in the Brillouin zone of the crystal and is not a unique one. The varying spatial extensions

of the Wannier functions depend upon the choice of Uk in the above expression. This

non-uniqueness of Uk arise from the fact that orbitals represented by Bloch states belong

to a set of bands that are separated by energy gaps from each other but have degeneracies

within themselves and thus at each k point there will be many unitary transformations

possible within themselves. This makes uses of Wannier functions unsuitable in the case

of real problems. A procedure to eliminate this arbitrariness was proposed by Marzari

and Vanderbilt [11]. In this method, iteratively redefined transformations would lead to

uniquely defined set of maximally-localized Wannier functions (MLWFs). This approach

can be applied to a variety of problems starting from an isolated system to a periodic solid.

For the entanglement band problem, this approach was extended by Souza et al. [12].
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3.1 Introduction

Although the 3d transition metal oxides have been studied since the 1950’s, improved

growth and characterization techniques as well as new theoretical approaches have con-

tinued to yield new insights [1–5]. The rare earth perovskite nickelates are of particular

current interest. These materials exhibit metal-insulator transitions for all members of

the family RENiO3 (where RE denotes a rare earth ion), with the exception of RE =

La [6, 7]. The metal-insulator transition is coincident with a crystal distortion in which

the mean Ni-O bond length alternates between two inequivalent Ni sites, defining a bond

disproportionation [8–11]. This state is sometimes also referred to as “charge ordered”.

The presence of the rare earth atom in the perovskite lattice has always been understood

as controlling the structural distortions. An atom with a smaller ionic radius leads to a

smaller volume of the unit cell. However, this would also imply shorter Ni-O bond lengths.

This shortening of the bond lengths has the effect of increasing the Coulomb repulsion

between electrons on Ni and those on oxygen. The NiO6 octahedra rotate leading to

longer Ni-O bond lengths. This results in Ni-O-Ni angles which deviate from 180o, with

the smaller RE ion resulting in larger deviations of the Ni-O-Ni angle. The bandwidth

of the Ni d states is controlled by the effective hopping interaction strength, which de-

pends on the Ni-O-Ni angle. Initially, the metal-insulator transition in the nickelates was

understood as being driven by the modified bandwidth arising from the rotation of the

NiO6 octahedra [12]. However, later analysis of the structure revealed a breathing mode

distortion associated with the NiO6 octahedra. One Ni atom had an expanded NiO6 oc-

tahedron associated with it, while the other had a contracted NiO6 octahedron associated

with it [8]. While there was no significant charge difference between the two Ni sites, the

associated Ni-O bond lengths led to one of the Ni atoms with longer Ni-O bond lengths

(∼ 2 Å) being labeled Ni2+, while the other with shorter Ni-O bond lengths (∼ 1.9 Å)

was labeled Ni4+. A similar finding has emerged in the context of other charge ordered

nickelates [8–11].

While the rare earth perovskite nickelates exhibit bond disproportionation, the rare earth

perovskite cobaltates formed with the neighboring transition metal atom Co in the same

oxidation state exhibit no such ordering. An important parameter that controls the

electronic structure for the late transition metal oxides is the charge transfer energy(∆),

given by the energy required to transfer an electron from the oxygen p levels to the

transition metal d levels. The charge transfer energy decreases as one goes across the

3d transition metal series from Ti to Cu [13] and it is natural to associate the change in

charge transfer energy with the propensity to bond disproportionation.
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Formal valence considerations assign the d7 configuration to the Ni in the RENiO3 per-

ovskites. However, if the charge transfer energy is strongly negative, the electronic con-

figuration is more appropriately represented as d8L̄ (with the L̄ denoting a hole on the

ligand). The importance of an effectively negative charge transfer energy in this family

of compounds was first pointed out by Barman et al. [14] while discussing the insulating

ground state of NdNiO3 in contrast to the metallic one of LaNiO3. Mizokawa et al. [15]

carried out model Hamiltonian calculations for a multiband Hubbard model and could

capture the bond disproportionation at a negative value of the charge transfer energy

when they included a breathing mode distortion of the NiO6 octahedra. This suggests

that the combination of lattice distortions and a negative charge transfer energy drove

the charge ordering. Mazin and coworkers [16] argued that the charge ordering was an

alternative to Jahn-Teller distortions, and part of the energy lowering associated with the

disproportionation came from the energy gain from Hund’s intra-atomic exchange inter-

actions, which favor a high-spin d8 state. Building on the Mizokawa picture, Park, Millis

and Marianetti [17] presented density functional plus dynamical mean field calculations

that explained the disproportionation in terms of a site-selective Mott transition occurring

in a situation in which the charge transfer energy was very negative, and Johnson and

collaborators later considered the same physics in a model system perspective [18]. On

the other hand, Peil and Georges [19] argued that an appropriate low energy description

of the physics was in terms of a Hubbard model with a vanishing or negative U ; in this

effective low energy picture, the bond-disproportionated state is indeed characterized by

charge order.

In this paper, we take a new approach to this issue by examining in more detail the

connection between bond disproportionation and the charge transfer energy. Introducing

a potential on the Ni d states, we are able to vary the charge transfer energy and examine

the ensuing changes in the structure as well as the electronic structure within an ab-initio

framework in contrast to all model Hamiltonian approaches in the past. We find that the

onset of charge ordering is characterized by the point at which the Ni d band enters the

oxygen p band, defining the effective negative charge transfer energy(∆eff ) [20,21]. This

destabilizes the RE-oxygen network which is otherwise ionic, driving the charge ordering.

3.2 Methodology

The electronic structure of NdNiO3 was calculated within a projected augmented wave [22]

implementation of density functional theory within the Vienna ab-initio simulation pack-

age (VASP) [23, 24] code. The experimental lattice parameters were taken [25]. The
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magnetic structure (both T-AFM [26, 27], non-collinear E′-AFM [28] and FM) was im-

posed and the electronic structure was calculated within the Dudarev implementation [29]

of GGA+U with a U of 4 eV on the Ni sites. The generalized gradient approxima-

tion(GGA) [30] was used for the exchange correlation functional. A Monkhorst-Pack [31]

k-points grid of 4×6×2 was used for calculating the electronic structure of the magnetic

supercell. While the lattice parameters were kept fixed at the experimental values, the

internal positions were optimized to find the minimum energy configuration so that the

forces were less than 10−3 eV/Å. The general features of the structure are similar when we

assume ferromagnetic order. Consequently, the rest of the analysis in terms of microscopic

model has been carried out for the ferromagnetic unit cell which is smaller. A k-point

mesh of 6×4×6 and an energy cutoff of 500 eV was used for the plane waves considered

in the basis. Spheres of radii 1 Å are constructed around each atom for the calculation

of the density of states and magnetic moment and within the spheres centered on the Ni

ions a d-symmetry potential of constant radial part is introduced. The structure is then

optimized to find the structural and magnetic parameters in the presence of the poten-

tial and the charge transfer energy is quantified by using maximally localized Wannier

function methods [32–34] to map the ab-initio band structure onto a tight binding model

using the VASP to Wannier90 interface [35]. The Bloch states are mapped onto Wannier

functions, localized on the respective atoms via a unitary transformation. The angular

parts are given by the relevant spherical harmonics. Once the transformation matrices

are determined, one has a tight binding representation of the Hamiltonian in the basis of

the maximally localized Wannier functions. The results are used to construct a schematic

diagram of the electronic structure.

For the thin film calculations, we consider putting layers of NdNiO3 on the NdGaO3 sub-

strate along the c-direction. The supercells used in the calculation were further considered

to be symmetric about the middle NdO layer to cancel any net polarization in the system.

There were five NdO and six GaO2 layers in the NdGaO3 substrate. However, in NdGaO3

Nd and Ga are in 3+ oxidation state and O is in 2- oxidation state. So, the NdO layer in

the substrate has a net +ve charge whereas the GaO2 layer has a net -ve charge, making

the system inevitably doped. To cancel this intrinsic doping we took a new approach

and replaced NdGaO3 with SrTiO3 where both SrO and TiO2 layers are neutral, keeping

the lattice parameters and position of the atoms same as NdGaO3. A 14 Å vacuum was

considered to take care of any inter-layer interactions. A k-mesh grid of 2 × 4 × 1 was

used to perform the k space integrations along with an energy cutoff of 400 eV. Internal

coordinates were relaxed for a minimum energy configuration till the forces on the atoms

were less than 10−3 eV/Å.
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3.3 Results and Discussion

There are two candidate orderings which have been proposed for the magnetic structure

of the magnetic nickelates. The first corresponds to an up-up-down-down ordering of the

spins on the Ni along the three pseudo cubic directions and has been referred to as T-AFM

type magnetic structure [26, 27]. There are variants that differ slightly in the stacking of

these chains and differ slightly in the total energy [27]. The other structure corresponds to

a non-collinear one in which the neighboring spins have equal magnitude but are rotated

by 90o [28]. We have used both of these structures to initialize our calculations; we find

that both cases relax to the same magnetic configuration. The fully relaxed structure

contains NiO6 octahedra of short mean bond length (∼ 1.90 Å) and NiO6 octahedra

of longer mean bond length (∼ 2.0 Å). The Ni sites with short-bond octahedra have a

zero magnetic moment, while the Ni sites with long-bond octahedra have a magnetic

moment of 1.50 µB (Ni2+). A similar difference of moment was found experimentally

and was initially interpreted as a Ni charge disproportionation [8]. However, examining

the density of states associated with each of the Ni sites (Figure 3.1), we find that the

t2g states on both Ni sites are completely filled, while the mean occupancy of the eg

states on both sites is ∼ 2. On the long-bond Ni site(Ni2+), the majority spin eg channel

is found deep inside the valence band and is fully occupied, while the minority spin eg

channel is empty, with a very small admixture of O p implying a Ni d8 configuration.

On the short-bond Ni sites(Ni4+) the high-lying eg states are found at ∼ 1-2 eV in the

conduction band and have significant O p admixture; these are antibonding states; the

corresponding bonding states are located deep inside the valence band. The significant

O p admixture suggests that one should associate an electronic configuration of d8L̄2 as

previously suggested [15,17,18]. As discussed by Park et al. [17] the spin splitting of these

states is very small (zero in the present calculation).

The almost ubiquitous charge ordering among the rare-earth nickelates suggests that it

should be associated with some aspect of the electronic structure. Among the undoped

transition metal oxides with the same chemical formula and same oxidation state, it is

only the nickelates which exhibit charge ordering. As the transition metal d levels get

increasingly stabilized with respect to the oxygen p levels as one move across the 3d

transition metal series [13], we went on to examine if it was the charge transfer energy

which was responsible for this unusual behaviour. Having established that the DFT+U

calculations correctly reproduce the basic physics of NdNiO3, we analyze the consequences

of varying the charge transfer energy. We introduced a constant potential on the Ni

d states and varied the charge transfer energy ∆ in steps. Structural optimization of

the atomic positions was carried out to examine the implications of the modifications
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Figure 3.1: The spin resolved (upper and lower panel) Ni eg and O p contributions to the density of
states for (a) Ni2+, (b) Ni4+ sites in NdNiO3 considering the T-type antiferromagnetic structure and U
= 4 eV on Ni.

of ∆ on the structure. For convenience in the analysis and interpretation, we consider a

ferromagnetic ground state (which can also be stabilized in the DFT+U method, although

it is not the true ground state). In the ferromagnetic state the inequivalent Ni sites have

respectively a large and a small moment, but in contrast to the T-type antiferromagnetic

state the smaller moment, while much less than the larger one, is not zero. In order to

quantify the changes in the charge transfer energy that was introduced, we carried out a

mapping of the electronic structure onto a tight binding model which includes Ni d and

O p states in the basis(see the methodology section for the method). Maximally localized

Wannier functions are used for the radial part of the wavefunction. As the presence of

magnetic order can move the Ni d levels with respect to their positions in the absence

of it, leading to a double counting of the effects of the exchange interactions, we use the

nonmagnetic calculation to define the value of ∆ for each calculation where the potential

at the Ni site has been varied. The on-site energies of the Ni d and O p levels extracted

from the mapping were used to calculate the value of ∆ for each case as the energy

difference between the O p levels and Ni eg levels. In order to show the quality of the

fit, we show a comparison of the ab-initio band structure and the fitted band structure in

Figure 3.2 for one of the ∆ values, ∆ = 0.81 eV. We vary the potential acting on the Ni,
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and for each value of the potential determine the magnetic moments, at each Ni site, the

amplitude of the bond disproportionation, and the charge transfer energy ∆ as defined

from the Wannier mapping.

Figure 3.2: A comparison of the ab-initio band structure and the tight binding fit for nonmagnetic
NdNiO3 at a ∆ = 0.81 eV

Figure 3.3: Variation in the (a) Ni-O bond lengths and (b) Magnetic moments on the Ni sites with ∆
for ferromagnetic NdNiO3 with U = 4 eV.
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Figure 3.4: Variation in the (a) Ni-O bond lengths and (b) Magnetic moments on the Ni sites with
∆eff for ferromagnetic NdNiO3 with U = 4 eV.

Because the charge transfer energy is a monotonic function of the on-site potential, we

plot the magnetic moments and mean octahedral bond lengths against charge transfer

energy ∆ in Figure 3.3. As ∆ is increased from the value ∼ 0.65 eV, Figure 3.3(a) shows

that the mean bond length of the short-bond octahedra increases(from a value of ∼ 1.88

Å), while the mean bond length of the long-bond octahedra changes only slightly. For

charge transfer energies greater than about 2 eV the difference between the two mean

octahedral bond lengths becomes negligible and they are order of 2.00 Å for both the

Ni sites when ∆ = 2.3 eV. In contrast to the result for the T-type antiferromagnetic

configuration where the Ni4+ sites had a zero magnetic moment associated with them, in

the ferromagnetic configuration we find that the Ni4+ sites have a finite magnetic moment

associated with them. Figure 3.3(b) shows a similar increase in the magnetic moment of

the short-bond site(from 0.52 µB) as the charge transfer energy is increased, with the

difference in moments between sites becoming negligible for ∆ & 2.30 eV. In this region,

the values for both the Ni atoms are ∼ 1.20 µB.

Having established that the charge transfer energy controls the disproportionation physics,

we now consider in more detail the mechanism. In order to understand the point at which

we had the onset of charge ordering, we calculated the bandwidth of the oxygen p band.

This was done by switching off the p-d interactions and calculating the width of the
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Figure 3.5: Schematic indicating the definitions ∆ and ∆eff used in the text. While a positive ∆eff has
uniform NiO6 octahedra, a negative ∆eff leads to transfer of holes to the oxygen p bands and occurrence
of a breathing distortion of the NiO6 octahedra.

oxygen p band. The depth of the oxygen p levels inside the oxygen p band(Wp), is used

to determine an effective charge transfer energy, ∆eff given as ∆−Wp(The definition of

∆ and ∆eff in a comparative manner is shown schematically in Figure 3.5). The mean

octahedral bond lengths and magnetic moments of Ni2+ and Ni4+ against the effective

charge transfer energy ∆eff are plotted in Figure 3.4. For the value of ∆eff ∼ 0.3 eV we

see no bond disproportionation with both the Ni atoms having equal mean Ni-O bond

lengths and the system becomes metallic. There is a small difference in the magnetic

moments associated with the two Ni atoms, and this could be an effect of the LDA+U

method we use that try to localize the electrons. Below the value of 0.3 eV, we see the

occurrence of bond disproportionation with two different Ni atoms having different Ni-O

bond lengths and magnetic moments. Also, the system becomes insulating as a result

of the charge ordering(CO) which is shown in Figure 3.4. Hence the onset of charge

ordering seems to be associated with the point at which the holes begin to occupy the

oxygen p band, factoring in a finite width of the transition metal d band. This is the

reason we find a narrow sliver of charge-ordered insulating state even for ∆eff > 0, before

becoming metallic. For larger finite ∆eff the system is a charge transfer(CT) insulator

as indicated in Figure 3.4. At a qualitative level this can be understood as follows. In

contrast to the transition metal-oxygen network which is very covalent, the rare earth-
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oxygen network is very ionic. With the holes moving onto the oxygens, this ionic network

is destabilized. Beyond a critical number of holes, one finds that the structure distorts,

driving the charge ordering instability. We find that the disproportionation disappears

when the charge transfer energy becomes large enough that the p-band becomes filled, as

shown schematically in the upper panel of Figure 3.5. This supports the view [17] that

the disproportionation arises from a preferential hybridization of the ligand holes with

one of the Ni states.

Figure 3.6: ∆eff calculated for all the rare earth nickelates with U = 2 eV on Ni sites.

We then examine the implications of the phase diagram in the context of all the rare

earth nickelates. For this, we have calculated the effective charge transfer energy ∆eff

for all the rare earth nickelates[Figure 3.6]. A U of 2 eV was found to give the correct

antiferromagnetic state as the ground state for NdNiO3. We therefore performed the

calculation for all the nickelates using a U of 2 eV on the Ni site. For RE = Ho to

Pr, the values lie in the range of -0.41 to -0.27 eV indicating a situation where the

Ni d band enters the oxygen p band and there are holes on the oxygens. As a result,

the ground state(GS) of the compounds are insulating with bond disproportionation.

For LaNiO3, the value of ∆eff is ∼ -0.62 eV and the GS is metallic without any bond

disproportionation. So, from here we can conclude that a negative value of delta is

necessary for bond disproportionation to occur, however, there is a critical value beyond

which the itinerant limit is reached. There will be larger band overlap and system becomes

metallic suppressing the MIT. Values of ∆eff in the range of -0.41 to -0.27 eV leads to an

insulating GS with a small variation in the band gap values. In the insulating state, the
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main role in controlling the band gap is played by the bandwidth(W). As we go from Lu

to Pr the ionic radii of the rare earth atom increases and the bandwidth of the system

also increases due to increased hybridization between the Ni d and O p states, this in turn

drives the system more towards the itinerant limit and there shall be a systematic decrease

in the metal to insulator transition temperature(TMIT ), in agreement with experimental

observations as reported in earlier works [12, 36, 37].

Is there a critical length scale for charge ordering? :

D. Meyers et al. [38] have found that charge ordering seems to vanish in the limit of 15

unit cells for films of NdNiO3 grown on NdGaO3. In order to examine this aspect, we have

calculated the electronic structure of the films at the bulk as well as the few monolayers

limit.

Figure 3.7: (a) The E′ type non-collinear antiferromagnetic ordering of the Ni moments. (b) Ni-O
bond lengths and Ni-O-Ni bond angles of Ni2+ and Ni4+ along the three pseudo cubic directions for
non-strained NdNiO3. (c) Effective collinear type antiferromagnetic ordering of the Ni2+ moments in
the optimized structures of both strained and non-strained NdNiO3. (d) Ni-O bond lengths and Ni-O-Ni
bond angles of Ni2+ and Ni4+ along the three pseudo cubic directions for strained NdNiO3.

We first looked at the bulk limit which was appropriately strained to mimic the NdGaO3

substrate. For this we have used the in-plane (ab-plane) lattice parameters of NdGaO3(a
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= 5.43 and b = 5.50Å) and experimentally reported c value of 7.60Å. This is equivalent

to applying a tensile strain of 1.4%. A E′ type non-collinear antiferromagnetic ordering

was imposed on the Ni sites[Figure 3.7(a)]. The converged solution shows a breathing

mode distortion of the NiO6 octahedra with two inequivalent Ni atoms[Figure 3.7(d)]

having large and short Ni-O bond lengths. The Ni atom with larger Ni-O bonds(Ni2+)

has a magnetic moment ∼ 1.52µB, whereas the magnetic moment associated with the Ni

atom having shorter Ni-O bonds(Ni4+) was found to be zero. This results in an effective

collinear type antiferromagnetic ordering of the Ni moments as shown in Figure 3.7(c).

However, due to the effect of strain, we do not see a pure breathing mode distortion in the

system that we observe in the non-strained case[Figure 3.7(b)]. For each NiO6 octahedra

the in-plane bond lengths become larger compared to the out of plane bond lengths. The

in-plane Ni-O-Ni bond angles are found to be 155o whereas the out of plane bond angle

is 154o. This is also in contrast to the non-strained case where the Ni-O-Ni bond angles

are equal to 156o along all the three pseudo cubic directions. So, application of strain ∼
1.4% is not enough to destabilize the charge ordered insulating ground state.

Next, to examine if there is any thickness dependence of the charge ordering, we con-

sider thin films of NdNiO3 grown on SrTiO3 substrate but with the lattice parameters of

NdGaO3(see the methodology section for details). For the thin film calculation, we again

consider the E′ type non-collinear magnetic ordering on the Ni atoms as well as ferromag-

netic ordering for a comparison purpose. For thin film calculations, the antiferromagnetic

state comes out to be the ground state and is insulating in nature. This is in contrast

to the bulk calculations where we get ferromagnetic as the ground state. Hence only

the antiferromagnetic solutions were considered for the further analysis of structural and

magnetic properties which are described below as a function of increasing layer thickness.

2 monolayer case: The 2 monolayer case is equivalent to depositing one formula unit

of NdNiO3 on the substrate. This consists of a single NdO layer and a NiO2 layer[Figure

3.8(a)]. This makes the thin film to be NiO2 terminated. Due to this, the Ni atoms in the

single NiO2 layer do not have a complete octahedral coordination. A non-collinear type

antiferromagnetic ordering was considered on the Ni atoms as shown in Figure 3.8(d).

The structural analysis of the optimized structure shows all the Ni atoms to be identical

having an equivalent environment. The Ni-O bonds of all NiO5 polyhedra are found to

be identical with a Ni moment ∼ 1.2 µB[Figure 3.8(b)]. Hence there is no charge ordering

in the system. The two in-plane Ni-O-Ni bond angles are found to be ∼ 164o and 172o.

These are larger and close to 180o compared to the bulk values as a result of incomplete

coordination of the Ni atoms.
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Figure 3.8: 2 monolayer case : (a) Schematic showing the two monolayers of NdNiO3 on NdGaO3

substrate. (b) Ni-O bond lengths and (c) the in-plane(ab-plane) Ni-O-Ni bond angles after structural
optimization. The magnetic moments associated with each of the Ni atoms are also mentioned. (d)
Non-collinear type antiferromagnetic ordering of the Ni moments in the single NiO2 layer.

Figure 3.9: 3 monolayer case : (a) Schematic showing the three monolayers of NdNiO3 on NdGaO3

substrate. (b) Ni-O bond lengths and (c) the in-plane(ab-plane) Ni-O-Ni bond angles after structural
optimization. The magnetic moments associated with each of the Ni atoms are also mentioned. (d)
Non-collinear type antiferromagnetic ordering of the Ni moments in the single NiO2 layer.
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3 monolayer case: As shown in Figure 3.9(a), the 3 monolayer NdNiO3 thin films are

produced by adding another NdO layer on top of the NiO2 layer. This NdO termination

makes the coordination of the Ni atoms in the NiO2 layer complete and now they have

octahedral coordination. The same magnetic ordering identical to the 2 monolayer case

was considered on the Ni sites[Figure 3.9(d)]. The Ni-O bond lengths in the optimized

structure are shown in Figure 3.9(b). Again we see that the Ni-O bond lengths of all the

NiO6 octahedra are identical with an associated magnetic moment of 1.66 µB. There is

no signature of charge ordering. However now, due to full octahedral coordination, the

Ni moment values are close to the bulk values(∼ 1.5 µB). Also, the Ni-O-Ni bond angles

are ∼ 150o, close to the bulk values.

Figure 3.10: 4 monolayer case : (a) Schematic showing the four monolayers of NdNiO3 on NdGaO3

substrate. (b) Ni-O bond lengths and (c) the in-plane(ab-plane) Ni-O-Ni bond angles in the two NiO2

layers after structural optimization. The magnetic moments associated with each of the Ni atoms are
also mentioned. (d) Non-collinear type antiferromagnetic ordering of the Ni moments in the two NiO2

layers.

4 monolayer case: Now we have two layers of NdO and two layers of NiO2[Figure

3.10(a)]. This again makes the thin film to be NiO2 terminated with the top NiO2 layer

having an incomplete coordination of oxygen atoms. The non-collinear antiferromagnetic

ordering imposed on the two Ni layers is shown in Figure 3.10(d). After structural op-

timization, all the Ni atoms in the first NiO2 layer having full octahedral coordination

shows identical Ni-O bonds and a magnetic moment ∼ 0.98 µB. The Ni atoms on the

topmost layer shows small variation in the Ni-O bonds as well as Ni moments between

two Ni sites[Figure 3.10(b)]. However the variations are too small and we again have a
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non-charge ordered solution. The in-plane Ni-O-Ni bond angles in the first NiO2 layer

are found to be ∼ 152o and 154o close to the bulk values, whereas the values for the top-

most NiO2 layer are found to be ∼ 163o and 172o, again due to an incomplete octahedral

coordination. The out of plane bond angle is ∼ 159o.

Figure 3.11: 5 monolayer case : (a) Schematic showing the five monolayers of NdNiO3 on NdGaO3

substrate. (b) Ni-O bond lengths and (c) the in-plane(ab-plane) Ni-O-Ni bond angles in the two NiO2

layers after structural optimization. The magnetic moments associated with each of the Ni atoms are
also mentioned.

5 monolayer case: The ordering of the NdO and NiO2 layers for the 5 monolayer case is

shown in Fig. 3.11(a). Again with NdO termination, now we have two NiO2 layers where

the Ni atoms have a complete octahedral environment. The magnetic ordering imposed

on the Ni atoms is similar to what has been shown in Figure 3.10(d). Now we can see a

breathing mode type distortion in the system with two distinct Ni atoms having different

in-plane Ni-O bond lengths[Figure 3.11(b)]. The Ni atoms having a shorter in-plane Ni-O

bond length ∼ 1.9 Å shows a smaller magnetic moment ∼ 1.0 µB, whereas the Ni atoms

having an in-plane bond lengths ∼ 2.0 Å have an magnetic moment value of ∼ 1.60 µB.

However, the observed bond disproportionation is not equivalent to the bulk case and the

charge ordering is incomplete. The in-plane Ni-O-Ni bond angles in both the NiO2 layers

are now close to the bulk values showing some small asymmetries[Figure 3.11(c)]. The

out of plane bond angle is ∼ 154o.

6 monolayer case: The layer configuration for the 6 monolayer case is shown in

Figure 3.12(a). Now again the film is NiO2 terminated which have incomplete octahedral
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Figure 3.12: 6 monolayer case : (a) Schematic showing the six monolayers of NdNiO3 on NdGaO3

substrate. (b) Ni-O bond lengths in the three NiO2 layers after structural optimization. The magnetic
moments associated with each of the Ni atoms are also mentioned.

coordination. The imposed magnetic ordering on the Ni atoms are equivalent to the

magnetic moments of the first three Ni layers as shown in Figure 3.7(a). As shown

in Figure 3.12(b), now the Ni atoms in the first and the third layer shows incomplete

charge ordering similar to the 5 monolayer case, whereas the Ni atoms in the middle

layer, sandwiched between the other two NiO2 layers shows a charge ordering similar

to the bulk case with two Ni atoms having zero magnetic moment. However, we do not

observe any breathing mode distortion comparable to the bulk calculations and the charge

ordering is still incomplete. The Ni-O-Ni bond angles in the middle NiO2 layer is ∼ 150o

and 152o, whereas for the top most NiO2 layer with incomplete octahedral coordination

they are ∼ 163o and 171o respectively. The out of plane bond angles alternate between

∼ 152o and 157o respectively.

3.4 Conclusion

The origin of charge ordering in the rare earth nickelates has been examined within first

principle electronic structure calculations for the case of NdNiO3. The charge transfer

energy between the oxygen p and the transition metal d states has been systematically

varied. The onset of charge ordering is found to be associated with the point when
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holes are located on the oxygen p band and is shown to take place beyond a critical

concentration. Although among the bulk rare earth nickelates the charge ordering seems

almost ubiquitous, as the size is reduced, one finds that there is a critical length scale below

which one has incomplete charge order/ no charge order consistent with the experimental

result.
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4.1 Introduction

There is a strong correlation between the structure and the property of a material [1–5].

Tunability in the property of such materials has been achieved by varying parameters

which induce changes in the structure. Considering the well studied perovskite oxides

given by the formula ABO3 where the A-site is usually occupied by a rare earth atom or

an alkali metal atom and the B-site is a transition metal atom, one finds that a change

in the size of the atom occupying the A-site results in changes in the electronic structure.

The system could be either insulating or metallic, with changes being induced in the tem-

perature at which the metal to insulator transition happens [6–8]. The changes emerge

from structural changes [1–8] which involve a rotation of the BO6 octahedra leading to

deviations of the B-O-B angle from 180◦ expected in an ideal cubic perovskite. Assuming

an almost rigid BO6 octahedron, the size of the A cation controls the volume of the unit

cell. A smaller size of the A cation results in a reduction of the cell volume. This results

in shorter B-O distances, which would then lead to an increase in the Coulomb repulsion

between electrons on B and those on O. To compensate for this increased Coulomb re-

pulsion, the BO6 octahedra tilt resulting in longer B-O bonds as well as B-O-B angles

that deviate from 180◦. Largely steric effects have been believed to be responsible for

the octahedral tilts in inorganic perovskites. Most of the perovskites are not good light

absorbers due to their band gap value deviating from the required range. Mitzi et al. used

perovskites with halides, ammonium cations and Sn2+ in optoelectronic devices, which

formed the basis for the development of perovskites for solar cells [9, 10].

Recently a new class of hybrid organic-inorganic perovskite based semiconductors are

drawing significant attention, specially for their use as solar cell material. Low cost and

fast preparation techniques in laboratory environment [11], high charge carrier mobilities

and large diffusion lengths [11–15] makes them an efficient and promising solar cell mate-

rial, showing conversion efficiency over 20% [16]. In the hybrid perovskites, the A-site is

occupied by an organic molecule. Hence in contrast to earlier where one had a spherical

atom, in the present case one has a cylindrical object occupying the A-site. This would

then imply that only specific orientations would be favored by the molecule. Moreover

now there are hydrogen atoms associated with the molecule which are involved in bond-

ing with the anions. Considering the most extensively studied member of these series,

CH3NH3PbI3(MAPbI3), it was shown that replacing MA with an ion which had the same

ionic radii led to the octahedral tilts vanishing [17]. This led them to the conclusion that

it was the hydrogen bonding with the anions that led to the octahedral tilts found in

the experimental structure. So, here the interaction between the molecule and the inor-
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ganic cage also plays an important role in determining the overall structural and hence

electronic properties of the system.

While the role of the cation at the A-site have been long recognized as playing an im-

portant role in the structure of the hybrid perovskites, recent experiments on MAPbI3

have brought forth another unusual aspect. Temperature dependent studies of the rel-

ative permittivity have found a strong frequency dependence even in the orthorhombic

phase [18]. This is surprising as the molecular dipoles are believed to be ordered in the

orthorhombic phase of the hybrid perovskites [19, 20]. This rules out any relaxation due

to free rotation of the dipoles which may be found in the high temperature tetragonal and

cubic phases. Further, symmetry analysis allow for a three-fold rotation of the molecule

about its molecular axis in the orthorhombic phase. However, the barriers associated

with these rotations have been found to be greater than 70 meV when the inorganic net-

work was kept rigid [21]. Hence the origin of the observed dipolar relaxations which are

suggestive of glassy dynamics in the low temperature orthorhombic phase are puzzling.

There have been suggestions of the presence of static disorder, associated with a partial

reorientation of the C-N axis in analogy to plastic crystals that have been offered [22].

Older experiments on MAPbBr3 [23] and MASnBr3 [24] also suggest similar behavior.

In this chapter, we examine the total energy landscape of MAPbBr3 using first principle

electronic structure calculations. Earlier studies have shown that the interaction between

the molecule and the inorganic cage is via hydrogen bonding. A dominant contribution to

the energy lowering during the structural optimization has the hydrogen atoms attached

to the nitrogen end of the molecule (HN) coming closer to some of the Br atoms of the in-

organic cage. The Br atoms respond by coming closer to the hydrogen atoms. This results

in the octahedral distortions that one encounters, which unlike in inorganic perovskites

result in larger distortions of some angles over others. The decrease of HN -Br bond lengths

are suggestive of strong covalent interactions between the HN and Br atoms. However,

a microscopic analysis carried out in terms of mapping onto a tight-binding Hamiltonian

reveals that a significant component of the interaction emerges from electrostatic interac-

tions. Further analysis reveals that one has a complex energy landscape with deep valleys

and large barriers emerging from competing interactions. There is no implicit relation

suggesting that shorter HN -Br bond lengths would determine the favored orientation of

the molecule. This leads to the presence of two minima whose energy differ by just 5

meV, but correspond to different orientations of the molecule in the ac-plane as well as

different tilt angles. This barrier was found while rotating the molecular C-N axis in steps

in the ac-plane and then relaxing the whole system. The barrier height between the two

minima is of the order of 30 meV per formula unit which is lower than that required for
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the twisting motions about the C-N axis in the orthorhombic phase with rigid inorganic

network reported in a previous DFT study [21]. The presence of deep valleys with similar

energies, suggests that the system could be quenched in either of these configurations, in

addition to the configurations being accessible by thermal excitations.

The ordering of the molecular dipoles in the ac-plane has neighboring dipoles at an angle

of∼ 130 degrees with respect to each other. This results in a net dipole moment within the

plane. These dipoles could be stacked in a ferroelectric arrangement or an antiferroelectric

arrangement in the b-direction. We explore both these configurations and find that they

are energetically degenerate. So, this comprises another source of orientational disorder

in the structure. Both these can explain the glassy dynamics that have been seen in the

orthorhombic phase.

4.2 Methodology

The electronic structure of the systems were calculated using a projected augmented

wave (PAW) [25] implementation of density functional theory within Vienna ab-initio

simulation package (VASP) [26, 27]. The generalized gradient approximation(GGA) [28]

was used for the exchange-correlation functional. Inclusion of the non-local, weak van der

Waals(vdW) interactions are necessary to correctly predict the structural properties. A

GGA+vdW density functional theory calculation has been found to give a good estimation

of the lattice parameters and structural properties [29, 30]. Dispersive interactions are

responsible for a significant contraction of the unit cell, correcting the overestimation

in general done by GGA. It also gives a band gap close to the experimental values for

Pb based compounds which is striking compared to normal semiconductors for which

we need to consider hybrid functionals. This happens due to cancellation of errors [31].

However, it cannot accurately describe the band dispersions. Inclusion of the spin-orbit

coupling(SOC) slightly changes the Pb−X(where X is halide atom) bond lengths but

strongly underestimates the band gap and SOC-GW is needed for accurate description

of the electronic structure [30, 31]. Still DFT calculations are useful for determination of

structural properties and sufficient for comparison of electronic properties of homologous

systems [32]. DFT-D2 method of Grimme [33] was considered to introduce dispersive

interactions within the system. A gamma centered Monkhorst-Pack k-mesh of 8×6×8

was used to perform the k-space integrations. In addition to this, an energy cutoff of

400 eV was used for the kinetic energy of the plane waves included in the basis. The

orthorhombic unit cell [34] was used though both the lattice parameters and the internal

positions were optimized till the forces on the atoms were less than 10−3 eV/Å to find
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the minimum energy structure. This structure has a space group symmetry Pnma and

is non-polar. This phase is an intermediate phase that was referred to as phase IV,

different from the phase that was reported previously by Poglitsch and Weber [20] having

a space group Pna21 which is polar in nature. Also dielectric measurements [23] show

a peak in the dielectric constant while entering this orthorhombic phase and have been

interpreted as suggestive of a ferroelectric nature. The optimized lattice parameters were

found to be 7.87, 11.69, 8.46 Å ∼ 1% smaller on average than the experimental values.

The average Pb-Br bond lengths are reduced by 0.7% and average Pb-Br-Pb bond angles

are reduced by 2.5% in the optimized structure compared to the experimental structure.

In the rest of the text we refer to this structure as the optimized structure. All results

described in the text are with the optimized lattice parameters unless specified otherwise.

Ab-initio band structure was mapped on to a tight binding model using an interface of

VASP to WANNIER90 [35–37]. A basis consisting of Pb s and p, Br p, C p and H s

states were used. The Bloch states are mapped onto Wannier functions, localized on

the respective atoms via a unitary transformation. The angular parts are given by the

relevant spherical harmonics. Once the transformation matrices are determined, one has

a tight binding representation of the Hamiltonian in the basis of the maximally localized

Wannier functions.

4.3 Results and Discussion

As pointed out in the Introduction, there is a strong coupling between the structure and

the properties in these perovskites. While the molecule at the A-site does not contribute

to any of the states several eV on either side of the Fermi energy, through modifications

in the structure, it determines the electronic structure. We therefore examine all these

aspects.

4.3.1 How does the molecule sit inside the inorganic cage?

In an inorganic perovskite, the atom at the A-site can be treated as a spherical entity and

so there is no preferred orientation. There could however be a displacement of the atom

from the center of the cage. However, here, the molecule at the A-site can be regarded as

a cylindrical object. We need to explore different orientations and determine the favored

orientation. This analysis would help us understand the microscopic energetics involved

in determining the structure.
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The orientation of the molecule

In order to understand the microscopic considerations that determine the favored orienta-

tion of the molecule, we start by considering the idealized orthorhombic cell without any

octahedral tilts. This is shown in Figure 4.1(a). As seen along the b-axis, the octahedral

cavity in which the molecule sits is a rectangle. If the C-N axis of the molecule is kept in

the ac-plane, the two configurations/orientations along which the molecule has maximum

freedom are the diagonals of the rectangle. In other configurations the distance between

the molecule and the inorganic cage as well as the space for the molecule are less. This

leads to Coulomb repulsions between the electrons on different atoms dictating the ener-

getics, resulting in configurations higher in energy by almost 30 meV per formula unit(fu)

as the molecule is rotated in the ac-plane. The optimized structure has the octahedral

tilts which are in Glazer’s notation [38] given by a−b+a−. This results in the rectangular

cavity being transformed into a rhombus-shaped cavity[see Figure 4.1(b)]. One now has

two inequivalent diagonals along which the molecule can lie. Steric effects again deter-

mine the favored orientation to be along the long diagonal, as the N-Br bond lengths are

significantly reduced to 3 Å as against 3.38 Å when the molecule was forcefully oriented

along the short diagonal. The latter configuration is lower in energy by 540 meV per

formula unit [39].

Figure 4.1: Bird’s eye view in the ac-plane of (a)orthorhombic unit cell of MAPbBr3 without any
octahedral tilts, (b) experimental orthorhombic cell. (c) Top: An alternate orientation of the molecule
along a body diagonal of the cavity shown by the dotted line was considered, its projection on the ac-plane
is shown by solid line. Bottom: Orientation in the optimized structure.
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If steric effect were the dominant energetics dictating the orientation of the molecule in

the cage, an alternate configuration which should be favored is one in which the molecule

lies along the body diagonal of the cavity as there would be space for the molecule to

spread out. This is shown in the top panel of Figure 4.1(c). For comparison the loca-

tion/orientation of the molecule inside the cavity for the optimized structure is shown in

the lower panel of Figure 4.1(c).

Placing the molecule in the ac-plane as in the optimized structure, one finds results in an

in-phase rotation of the octahedra in the b-direction so that no atoms of the cage come too

close to the molecule. This is the reason for the a−b+a− tilt pattern that one has in this

case. Changing the orientation of the molecule to that shown in the upper panel of Figure

4.1(c) allows for a tilt pattern in which the rotations in the b-direction are out of phase i.e.

a−b−a−[See section 1 of Appendix A]. This is also higher in energy by 160 meV/fu over

the optimized structure which has the molecule in the ac-plane. These results suggests

that the orientation of the molecule controls the octahedral tilts but there are other

considerations apart from steric effects which determine the orientation of the molecule in

the octahedral cavity. A detailed description to determine the favored orientation of the

molecule is given in section 2 of Appendix A and can work as a guiding steps to determine

the GS structure for any other system with a different organic molecule.

Does the molecule sit at the center of the inorganic cage?

The organic molecule comprises of two different atoms with different electronegativities

which are connected to hydrogens. This sets up a dipole in each octahedral unit of

the cell. Placing the molecule in the undistorted orthorhombic structure as shown in

Figure 4.1(a), one finds that the molecule does not sit with its center coinciding with

the geometric center of the cell. It however moves to one part of the cage with the

consideration being that shorter bonds are made between the hydrogen atoms attached

to the nitrogen atom(HN) and the Br atoms[Figure 4.2(b)]. The question that follows is

how do these dipoles order. This has been a controversial topic in the literature [40]. In

the ac-plane the nearest-neighbor dipoles makes an angle of ∼ 130o in the ground state

structure(See section 3 of Appendix A for a schematic view). This arrangement is a result

of the correlation between the favored orientation of the molecule and octahedral tilts.

The next question we asked was how do the dipole moments along the cavity in the b-

direction orient themselves. We could have a ferroelectric arrangement, where the dipole

moments align or an antiferroelectric arrangement of the dipole moments(See section 3 of

Appendix A for a schematic view). The former arrangement has the methyl/ammonium

groups of the molecule vertically stacked. Consequently, the separation between groups
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of the same type is the least in this arrangement. In a simplified picture we can think

of the CH3 group as a cation i.e. (CH3)
+ while the NH3 group is thought of as an

anion (NH3)
−. In this simplified picture, the separation between fragments with the

same charge is the least in the ferroelectric type of stacking. This should increase the

Coulomb interactions. Considering the ferroelectric and the antiferroelectric orientations

of the dipole, one found that the antiferroelectric configuration was lower in energy by

120 meV/fu. In these calculations we allowed only the molecule to relax. However, when

we allowed the inorganic cage to relax with the ferroelectric stacking, one arrived at a

structure with lower symmetry (monoclinic) which was energetically degenerate with the

antiferroelectric one (the optimized structure).

Figure 4.2: (a)Position of the molecule at the center of the ideal cavity(upper panel) and corresponding
H-Br bonds(lower panel). (b) Movement of the molecule from the center of the cage shown by dotted
line(upper panel) and increased hydrogen bonding after the movement(lower panel) compared to the ideal
case shown in Figure 2(a). (c) Distorted cavity due to octahedral tilts(upper panel) and corresponding
hydrogen bondings(lower panel). The hydrogen atoms in the NH3 and CH3 group are indicated by
light(green) and dark(black) circles respectively. Distance between H atoms of NH3 and Br atoms less
than 3.0 Å are shown by solid green lines. The numbers denote the corresponding distances in Angstroms.

4.3.2 How does the molecule interact with the inorganic cage?

The movement of the NH3 end of the molecule away from the center suggests that the

molecule interacts with the inorganic cage through the hydrogens. Although hydrogen

is known to form multicenter bonds [41], it is not clear what is the nature of the bond
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here. In order to examine this aspect and understand the microscopic considerations

that led to the shorter HN -Br bonds, we mapped the ab-initio band structure onto a

tight binding model(see the methodology section for the method). Maximally localized

Wannier functions are used for the radial part of the wave function. As we have the

complete Hamiltonian here, we can switch off interactions associated with parts. This

analysis was done for three situations shown in Figs. 4.2(a)-4.2(c) which we now call

case1, case2, case3 respectively. In case1, we have considered an orthorhombic unit cell

with no octahedral tilts. The molecule is at the center on the octahedral cavity. In case2,

again there are no octahedral tilts but the molecule was allowed to relax. It was found

to move towards one part of the cage making shorter HN -Br bonds. In case3, the whole

system was relaxed and we arrive at the optimized crystal structure which is found to

have octahedral tilts as well as displacement of the molecule. The superposition of the

ab-initio and tight binding bands for case3 is shown in Figure 4.3(a)(others are given in

section 4 of Appendix A).

Figure 4.3: (a) The tight-binding(circles) and ab-initio(solid line) band structure of optimized
MAPbBr3 for case3. (b) Schematic showing how the molecule interacts with the inorganic cage. There is
stronger covalent interaction between the methyl group and Br atoms whereas it is largely electrostatic
in nature between amine group and Br atoms. (c) As a result of this asymmetric interaction the molecule
move towards one direction and Br atoms may also be displaced towards the molecule, giving rise to
octahedral tilts.

In each case we have a good description of the ab-initio band structure in terms of the

tight-binding model. This allows us to discuss the role of the electronic structure on the

observed structural changes. Since we have the tight binding Hamiltonian in each case,

this allows us to switch off a particular set of hopping interactions to determine the energy

gain via covalency from the considered hopping channel. The most surprising result that

we find (Table 4.1) is that the gain from covalency between HC-Br is almost an order

of magnitude higher than the energy gain from covalency between HN -Br. This result is

similar for all the three cases tabulated in Table 4.1. This suggests that the driving force

for HN moving towards Br is not increased covalent interactions but is most probably

electrostatic in nature. This is shown schematically in Figure 4.3(b).
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Table 4.1: Quantitative analysis of the covalent interaction between hydrogen and Br
atoms

Energy per fu in meV
Interactions case1 case2 case3
H-Br ALL 0.0 0.0 0.0
HN -Br OFF 63.0 98.0 108.0
HC -Br OFF 518.0 525.0 495.0

As N is more electronegative than C, one finds that electrons from the hydrogen atoms

attached to it are transferred to the nitrogen atom. This leaves the hydrogen atoms with

a net positive charge. They in turn get attracted to the negatively charged Br atoms

and hence the HN -Br bond lengths become shorter. This explains the very small covalent

component of the HN -Br interactions, despite the fact that the structural optimization

results in shorter HN -Br bond lengths. The lowering of energy of the system by forming

shorter HN -Br bonds has the amine end of the molecule moving towards the inorganic

cage as a result of an attractive Coulomb interaction. The Br atoms of the cage are also

displaced from their edge centered positions in the idealized perovskite lattice shown in

Figure 4.3(c) towards HN atoms. As a result the Pb-Br-Pb angles deviate from 180o. This

is the reason why hydrogen bonding is responsible for driving the octahedral tilts.

Examining the spatial distributions of the wave functions, we find that the basis functions

associated with the NH3 part of the molecule turn out to be s − p hybrids as shown in

Figure 4.4(a). The spread of the wave function is small and is given in Table 4.2. A

similar analysis of the basis functions associated with the hydrogens attached to the CH3

end of the molecule reveal that the basis functions are s− p hybrids with weight on two

of the hydrogen atoms as well as on C. This is shown in Figure 4.4(b). In comparison

with the basis functions associated with the hydrogens attached to the NH3 end of the

molecule, here, we find that the spreads are at least double for two of the basis functions.

However the spread for one of the basis functions of the hydrogen atom[shown in Figure

4.4(c)] is found to be anomalously high, almost four times larger compared to the other

two.

Table 4.2: Spread of the wannier functions of the hydrogens attached to N and C atoms
in the optimized structure

Hydrogens attached to Spread in Å2

HN 0.58 0.60 0.62
HC 4.08 1.28 1.29

A clue for the larger spreads can be found when one examines the interaction strengths.

These are specified in Figure 4.4 for the cases where the matrix elements (MEs) are sig-

nificant . The interaction strengths of the basis functions localized on the NH3 end of the

molecule are found to be smaller than those which are localized on the CH3 end, indicat-
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Figure 4.4: (a) The spatial distribution of the Wannier functions(WFs) of the hydrogens attached to
the N atom (b) The spatial distribution of the two hydrogen WFs attached to the C atom with smaller
spread and (c) having the largest spread with the Wannier center(shown by black dot) moving away from
the C-H bond. The matrix elements(MEs) corresponding to the interactions of these basis functions with
Br are also specified. An isosurface value equal to half the maximum value was used to make these plots.

ing larger covalency in the later case. The most surprising result is for the interactions of

the basis function shown in Figure 4.4(c). Here one finds that the basis function has its

center shifted away from the C-H bond. This shift allows it to interact strongly with two

of the Br atoms. This suggests the formation of a multicenter bond by hydrogen with C

as well as the two Br atoms which have been shown.

4.3.3 Implications on physical properties

Having understood the energetics governing the location of the molecule in the octahedral

cavity as well as its interactions with the inorganic cage, we proceed to examine if the

calculations could throw some light on the glassy dynamics that have been seen within

the orthorhombic phase.

The molecular dipoles are believed to be frozen in their position in the low tem-

perature structure [19, 20] with earlier works suggesting that the barriers for rota-

tion(rotation/tumbling motion) of the molecule are large. Theoretical calculations shows

that for twisting motions about the C-N axis, the barriers are ∼ 100 meV [21] when the
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Figure 4.5: (a) The change in the energy as a function of the rotation(in ac-plane) angle of the molecule.
The angle θ is shown in the inset. The optimized structure for the two minimum energy configurations
where C-N axis makes an angle (b) ∼ 12o (configuration A) and (c)∼ 28o (configuration B) with the
(101) direction

inorganic network was kept rigid. Our analysis of small excursions of the molecule about

its position in the optimized structure suggest that the energy landscape is complex. One

cannot consider the rotations of the molecule alone, keeping the inorganic cage rigid. The

cage has to be allowed to relax during the rotations of the molecule. Hence allowing for

small rotations of the molecule in the ac-plane we find there is another minimum whose

energy is just 9 meV/fu higher. This energy difference is very sensitive to the volume of

the unit cell. Using the experimental lattice parameters, the difference is found to be 5

meV/fu as shown in Figure 4.5(a). The optimized structures for configuration A(ground

state structure) and configuration B(the second minimum) are shown in Figs. 4.5(b) and

4.5(c). The differences in these two structures are small with the Pb-Br-Pb angles chang-

ing from 151o and 154o to 158o and 152o accompanied by deviations in the HN -Br bond

lengths from 2.37, 2.51, 2.61 Å to 2.60, 2.34, 2.50 Å. The presence of such close lying
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minima separated by large barriers are evidence for the observed glassy dynamics. The

system could be quenched into either of these configurations which can additionally be

accessed by thermal excitations.

An additional source of orientational disorder emerges from the fact that the dipoles

stacked in the b-direction have the same energy for a ferroelectric arrangement as well as

an antiferroelectric arrangement. One should point out here that one allowed the inorganic

cage to relax when we considered these two orientations of the dipoles. Configurations

with a ferroelectric stacking of the dipoles along b-direction, without allowing the inorganic

cage to relax, are found to be higher in energy than the antiferroelectric configuration

by about 120 meV/fu, which was mentioned previously. The energy landscapes with

deep valleys separated by high barriers is reminiscent of what one usually finds in glassy

systems and could explain the glassy dynamics that have been seen in experiments.

4.4 Conclusions

The origin of the glassy dynamics that have been seen in the orthorhombic phase of

hybrid perovskites has been studied considering (MA)PbBr3 as an example. A complex

energy landscape is found with deep valleys and high barriers for molecular rotations

within the ac-plane. Additionally the stacking of dipoles in the b-direction is found to

be energetically degenerate for a ferroelectric as well as an antiferroelectric arrangement

again with higher energies for intermediate orientations. These results could explain the

observed glassy dynamics found in the low temperature structure where the dipoles are

expected to be frozen in certain orientations.
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5.1 Introduction

The thrust for moving away from a dependence of energy on fossil fuels has led to growing

attention on other sources, solar energy being one of the options. An important element

of any process harnessing solar energy and converting it to an electric current involves

using the incident photons to create electron-hole pairs across a band gap. These charge

carriers then have to be physically separated before they recombine [1]. In this process a

current is generated. An obvious route to increase this current is to have more electron-

hole pairs. As the solar spectrum shows a maximum intensity(i.e. more photons) within

the visible region between 1.7 and 3.2 eV, tuning the band gap of the solar cell material

within this energy window is desired for maximum absorption of the solar energy. Though

a number of semiconductors have their band gaps within this energy range, not all of them

can be used in solar cells due to some constraints, the primary one being the presence

of defects. Along with a desired band gap and the possibility of band gap tuning, we

need large diffusion lengths and lifetime for the charge carriers, so that they can be easily

separated before the recombination takes place. The presence of defects hampers this.

High mobility of the charge carriers are also desired for swift transport and minimal loss.

Recently a new class of perovskite materials have been found to be attractive for use

in solar cells. These are called hybrid perovskites where the A-site is occupied by an

organic molecule. Due to high charge carrier mobilities, large diffusion lengths and carrier

lifetime [2–6] , low cost and fast preparation techniques in laboratory environment [2], and

a conversion efficiency of over 20% [7], they have become the subject of intense research

activity. An advantage of this type of perovskite materials that emerges is the multiple

number of ways that one can control the band gap. Theoretical calculations show that

the electronic structure of inorganic/hybrid lead halide perovskites [(A/OM)PbX3, A =

inorganic atom, OM = organic molecule, X = halide atom] have contributions from the

s, p states of Pb and p states of the anion X . The valence band maximum is found to

emerge from the interactions between the Pb s and X p states and has dominantly X p

character. The conduction band minimum has Pb p character. This immediately suggests

that by tuning the strength of the Pb s - X p interaction, one can change the band gap

of these materials. A route to achieve this is by structural modifications. Though the

atom/molecule at the A-site has no electronic states several eV about the Fermi energy,

it can still control the structural properties and hence have an indirect effect on the

electronic structure and therefore the band gap. It has been well known that the size

of the atom/molecule at the A-site of the perovskite lattice plays an important role in

determining the size of the unit cell that results in a change of the Pb-X bond lengths and

Pb-X-Pb bond angles. These two have different effects on the band gap of the system. A



136
CHAPTER 5. HYBRID PEROVSKITES UNDER PRESSURE: REVISITING SOME

STRUCTURAL CHEMISTRY CONCEPTS

smaller size of the A-site cation results in a reduction of the cell volume. This results in

shorter Pb-X distances, which would then lead to an increase in the Coulomb repulsion

between electrons on Pb and those on X . To compensate for this increased Coulomb

repulsion, the PbX6 octahedra tilt resulting in Pb-X-Pb angles that deviate from 180◦ as

well as small elongations of the Pb-X bond lengths. A shorter Pb-X bond length increases

the splitting between the bonding and anti-bonding states. The valence band is pushed

up in energy and this decreases the separation between the valence band maximum(VBM)

and conduction band minimum(CBM), resulting in a reduction of the band gap. On the

other hand deviation of the Pb-X-Pb angle from 180◦ decreases the bandwidth of the

valence band as a result of reduced connectivity of the PbX6 units. This increases the

separation between VBM and CBM resulting in an increased band gap. These results

suggest opposite tendencies of the modifications in the electronic structure when the

cation at the A-site is replaced by a smaller atom. The natural question that follows

is, which effect dominates. Our calculations with the inorganic perovskite CsPbBr3 in

the orthorhombic phase shows that the changes in the Pb-Br bond lengths dictate the

changes in the band gap of the system. One finds a systematic increase in the band

gap with increase in the volume of the unit cell. The band gap tuning is also possible

by other means. For example, the band gap and optical properties of (A/OM)PbX3

can be easily tuned in the entire visible region of the electromagnetic spectrum by anion

exchange [8,9]. Replacing Pb with Sn in the general composition (MA)SnxPb(1−x)X3 has

also been reported to control the band gap [10,11]. These are similar to band gap changes

seen in binary semiconductors by changing the cation or the anion.

The situation becomes more complex in the case of hybrid perovskites. In contrast to

inorganic perovskites where the A-site is occupied by an spherical atom, in the present

case one has an organic molecule which is asymmetric in shape. In addition to this, now

there are hydrogen atoms associated with the molecule that are involved in hydrogen

bonding with the halide ions. Ab-initio calculations with CH3NH3PbI3(MAPbI3) shows

that replacing MA with an ion which had the same ionic radii led to the octahedral tilts

of the Pb-I network vanishing [12]. This led them to the conclusion that it was hydrogen

bonding with the anions that led to the octahedral tilts found in the low temperature

experimental structure. So here, hydrogen bonding along with steric effect plays an

important role in the structural distortions. Also due to the asymmetry of the molecule,

certain orientations are preferred over others. A change in orientation of the molecule leads

to a change in structural distortions giving rise to a complex potential energy landscape

[13,14]. Hence changing the organic molecule in the hybrid perovskites can be an effective

way to tune the band gap of the system. But compared to inorganic systems, here a

systematic study of the effect of changing the organic molecule is not straight forward.
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Several factors have to be considered while replacing the organic molecule. The molecule

within the octahedral cavity does not stay at the center of the inorganic cage but moves

towards one end to maximize hydrogen bonding. Such movements of the molecule along

with its asymmetry lead to anisotropic changes in the structural distortions. The ground

state(GS) orientation and conformation of the molecule also needs to be determined to

obtain the GS structure of the system. Otherwise the optimized structure may lead

to different tilt systems for different molecular orientations than what is observed in

experiment. Due to these factors, no systematic trends in the band gap have been found

as a function of the organic molecule [15]. Unless one isolates the different factors, the

conclusions are also clouded, leading to an ambiguity in the role of the organic molecule

at the A-site. The paper by Aman et al. [16] suggests that larger cations are expected

to have reduced band gaps due to decreased octahedral tilting. In contrast, Safdari et

al. [17], find an increase in the band gap as the A-site cation is changed from MA to EA

to PA.

Our calculations with MAPbBr3 in the orthorhombic phase shows that changes in the

volume lead to change in the movement as well as rotation of the molecule. The structural

changes are such that the steric effects result in larger variations of the out of plane bond

lengths compared to the in-plane bond lengths, but negligible changes in some of the

Pb-Br-Pb bond angles, with a decrease in the volume of the unit cell. This leads to very

small band gap changes arising from variations in bond angles. However an expansion

of the unit cell volume results in band gap changes arising from variations in both the

bond lengths as well as the bond angles. Armed with this understanding, we replaced MA

by EA(CH3CH2NH3) within the octahedral cavity. Taking into consideration the proper

orientation, conformation of the molecule and optimizing the unit cell volume, we found

that the band gap increased with a dominant effect emerging from an increased Pb-Br

bond lengths.

5.2 Methodology

The electronic structure of the systems were calculated using a projected augmented

wave (PAW) [18] implementation of density functional theory within Vienna ab-initio

simulation package (VASP) [19, 20]. The generalized gradient approximation(GGA) [21]

was used for the exchange-correlation functional. Inclusion of the non-local, weak van der

Waals(vdW) interactions are necessary to correctly predict the structural properties. A

GGA+vdW density functional theory calculation has been found to give a good estimation

of the lattice parameters and structural properties [22, 23]. Dispersive interactions are
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responsible for a significant contraction of the unit cell, correcting the overestimation

in general done by GGA. It also gives a band gap close to the experimental values for

Pb based compounds which is striking compared to normal semiconductors for which

we need to consider hybrid functionals. This happens due to cancellation of errors [24].

However, it cannot accurately describe the band dispersions. Inclusion of the spin orbit

coupling(SOC) slightly changes the Pb-X bond lengths but strongly underestimates the

band gap and SOC-GW is needed for accurate description of the electronic structure

[23, 24]. Still DFT calculations are useful for determination of structural properties and

sufficient for comparison of electronic properties of homologous systems [25]. DFT-D2

method of Grimme [26] was considered to introduce dispersive interactions within the

system. Gamma centered Monkhorst-Pack k-mesh of 8×6×8 was used to perform the

k-space integrations. In addition to this, an energy cutoff of 600 eV was used for the

kinetic energy of the plane waves included in the basis. The orthorhombic unit cell [27]

was used for all the calculations and the internal positions were optimized till the forces

on the atoms were less than 10−4 eV/Å to find the minimum energy structure. This

structure has a space group symmetry Pnma and is non-polar. For a band gap comparison

between MAPbBr3 and EAPbBr3 the lattice parameters were optimized. For MAPbBr3,

the optimized lattice parameters are found to be 7.97, 11.83, and 8.56 Å, very close to the

experimental values of 7.98, 11.84, and 8.56 Å respectively. For EAPbBr3, the optimized

lattice parameters are found to be 8.11, 12.04, and 8.71 Å. Here we considered the long

C-N bond (2.44 Å) as the axis of the molecule. In order to find the positions of the

atoms, the orientation and stacking of the EA molecule were chosen so as to maximize

hydrogen bonding and minimize steric effects. The long C-N bond of the EA molecule was

chosen to lie along the (101) direction(ac-plane), similar to what one had for the MA case.

The stacking of the molecules in the b-direction was chosen with the C end of the lower

molecule sitting below the N end of the upper molecule. The structure was then relaxed

in several steps to optimize the volume of the unit cell. The stacking of the molecules

and orientation in the optimized structure is shown in the inset of Figure 5.5(c). Several

other configurations were considered for the EA molecule. These were found to be local

minima with higher energies. An orthorhombic unit cell [28] of CsPbBr3 was used for the

calculations.

5.3 Results and Discussion

We first consider the effect of changes in the volume of the unit cell on the band gap

of the system. To examine this we have considered the experimental low temperature
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structure for CH3NH3PbBr3(MAPbBr3) which is orthorhombic. The internal positions

were relaxed so that the ions took their minimum energy configuration in the lattice. The

two in-plane(ac-plane) Pb-Br-Pb bond angles were found to be ∼ 153o while the out of

plane Pb-Br-Pb angle was found to be larger and equal to ∼ 167o in the optimized unit

cell. In order to vary the volume, we carried out a uniform expansion and compression of

the unit cell in steps up to a variation of 6% about its experimental volume. All angular

distortions were kept constant, and the change in the band gap as a function of the volume

was calculated.

This is shown in Figure 5.1(a) where the band gap variations are shown with respect to

the value for the 0% case. The variations in the band gap are found to be monotonic,

with the band gap increasing with an increase in volume.

In order to understand the reason for this trend in the band gap as the volume is varied,

it is useful to examine the expected changes in the electronic structure. This is shown

schematically in panel (c) of Figure 5.1. The Pb s states which are deep inside the valence

band interact with the anion p states forming bonding and antibonding states. The

antibonding states determine the position and character of the valence band maximum.

The Pb p states make up the conduction band minimum. A change in the volume results

in an elongation of the Pb-Br bond length. As the hopping interactions strengths for

an electron from Pb s to Br p levels scale with distance as 1/r2 [29], the elongation is

expected to decrease the hopping strengths. This results in a reduction in the bonding-

antibonding separation, resulting in the valence band maximum getting pushed deeper

into the valence band. This leads to the observed increase in the band gap with volume.

In the calculations examining the volume increase, the angular distortions of the PbBr6

octahedra were kept fixed and their effect on the band gap increase was not examined.

We have therefore considered the orthorhombic unit cell at the experimental volume and

placed the Pb and Br atoms at their ideal positions in this unit cell. This leads to a

high symmetry orthorhombic cell without any octahedral tilts. All three Pb-Br-Pb bond

angles along the three pseudo cubic axis are 180o. We then introduce angular distortions

in this high symmetry structure in steps in a controlled manner. We rotate the PbX6

octahedras about the pseudo cubic (101) direction in a cooperative way such that they

are out of phase along the pseudo cubic axes in the ac-plane and in phase along the

pseudo cubic b-direction. This introduces a, a−b+a− tilt pattern [30] consistent with the

dominant GdFeO3 distortions found for MAPbBr3. In four steps we increase the angular

distortions while the volume of the unit cell is kept fixed. In each case we calculate the

band gap. The change in the band gap as a function of the Pb-Br-Pb angle is shown
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Figure 5.1: (a) Band gap variation as a function of uniform volume change about the experimental
volume and with a fixed angular distortion of the optimized structure. (b) Variation in the band gap as
function of angular distortion with fixed unit cell volume. (c) Increased band gap due to an decreased
bonding-antibonding splitting as a result of increased Pb-X bond length. (d) Decreased band gap due
to an increased bandwidth as a result of decreased angular distortion.

in Figure 5.1(b). We find that as the PbBr6 octahedra rotate and the Pb-Br-Pb angle

deviates from 180o, the band gap of the system is found to increase.

Again we used the schematic representation of the electronic structure shown in Figure

5.1(d) to understand the expected changes with the angular distortions. the deviation of

the Pb-Br-Pb angle from 180o results in reduced connectivity of the octahedral networks.

This leads to a reduced bandwidth associated with both the bonding and antibonding

states as the angle deviates from 180o. This leads to an increase in the band gap and

explains the trends seen in Figure 5.1(b).

The calculations presented in Figure 5.1 had some constraints associated with them. In

reality, however, when one replaces an atom at the A-site with an atom with a larger ionic

radius, one has an increase in the volume of the unit cell. As a result there is an increase

in the Pb-Br bond length, as well as a decrease in angular distortions of the Pb-Br-Pb

network. As one saw earlier, the former effect would result in an increase in the band gap

while the latter effect would result in a decrease. This immediately raises the question of

which effect is expected to dominate and dictate the changes one expects when an atom
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of smaller ionic radius at the A-site is replaced by an atom with a larger ionic radius. In

order to examine this aspect, we considered the inorganic perovskite CsPbBr3.

The experimental low temperature orthorhombic unit cell was considered. This was then

subject to uniform expansion and compression of 4% with respect to the experimental

volume. The atomic positions were relaxed at each volume and we show a representative

PbBr6 octahedra in each of the three cases in Figure 5.2.

Figure 5.2: Pb-Br bond lengths and Pb-Br-Pb bond angles along the three pseudocubic directions in
the optimized structures of CsPbBr3 for (a) 4% volume compression (b) experimental volume and (c) 4%
volume expansion.

The octahedron for the 4% compressed case is shown in Figure 5.2(a). One finds that the

in-plane(ab-plane) Pb-Br-Pb angles are found to be 149o while the out of plane angles are

found to be larger and equal to 154o. These angles have to be compared with those for

the optimized experimental unit cell shown in Figure 5.2(b) where the in-plane angles are

150o while the out of plane angles are 156o. There are also changes in the Pb-Br bond

lengths in the compressed structure. They are found to be reduced with respect to the

experimental unit cell. Consequent to these structural changes one also finds a decrease

in the band gap. These results suggest that it is the bond length changes which dominate

and determine the change in the band gap.

Examining the case of expansion of the unit cell volume, the geometry of one octahedron

for the 4% expansion case is shown in Figure 5.2(c). Here one finds an increase in the

in-plane bond angles with respect to the experimental unit cell of 151o from 150o as well

as an increase of the out of plane bond angles from 156o to 157o. The bond length increase

is much larger and this is what determines the band gap change that one finds of ∼ 0.09

eV.

The ideas of how the octahedra responds when a perovskite of the form ABX3 is subject

to a volume change have conventionally been described in terms of the compressibility

of the AX12 units versus the BX6 units [31]. These ideas translate into whether the



142
CHAPTER 5. HYBRID PEROVSKITES UNDER PRESSURE: REVISITING SOME

STRUCTURAL CHEMISTRY CONCEPTS

volume changes reflect in larger changes in the bond lengths or in the bond angles. Hence

depending on the relative compressibilities, one could have either the band gap increasing

or decreasing. This brought us to the question, what happens when one has a molecule

at the A-site. Would one of the two effects dominate and therefore provide a universal

trend in the case of the hybrid perovskites.

Figure 5.3: Band gap variation in MAPbBr3. Circle : Band gap variation as a function of uniform
volume change about the experimental volume and with a fixed angular distortion of the optimized
structure. Square : Band gap variation as a function of uniform volume change about the experimental
volume and with an allowed structural optimization. Triangle : Difference plot.

In order to understand the role of A-site compressibility versus B-site compressibility, we

consider the case of MAPbBr3. A theoretical scheme allows us to disentangle the con-

tributions from each of these parts by considering limiting cases. We took the optimized

ground state experimental structure and considered uniform expansion and contraction

of the unit cell volume about the experimental volume keeping the angular distortion

fixed. For each case we calculate the band gap of the systems. This has been plotted

with respect to the value determined for the experimental volume (n = 0)[see Figure

5.3(circles)]. Next at each volume we have optimized the internal positions of the ions

to their minimum energy position(Full relax structures), This induces additional angular

distortions compared to the structures where angular distortions were kept fixed. The

band gap was calculated for each case and has been plotted with respect to the value

determined for the experimental volume (n = 0)[see Figure 5.3(squares)]. The band gap

at each volume without any change in the angular distortion, is indeed found to be larger.

This is expected because, as we have discussed earlier, change in angular distortion op-
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poses the change in bond lengths. However the enhancements are found to be quite small

where volume changes are 1-2 % of the experimental volume. This suggests that in this

regime one can clearly say that bond length changes dictate the band gap change.

Figure 5.4: Pb-Br bond lengths and Pb-Br-Pb bond angles along the three pseudocubic directions in
the optimized structures of MAPbBr3 for (a) 4% volume compression (b) experimental volume and (c)
4% volume expansion.

To quantify this further, we examine the PbBr6 octahedra in a few cases. These are shown

in Figure 5.4 and correspond to the optimized structures at 4% compression, experimental

volume as well as the 4% expanded case. The Pb-Br bond lengths as well as the Pb-Br-Pb

angles have been indicated in each case. Considering the unit cell corresponding to the

uniformly compressed PbBr6 octahedra, one finds changes in both the in-plane and out of

plane bond lengths. Changes in the out of plane bond lengths are larger compared to the

in-plane ones. The in-plane bond angles are also found to change asymmetrically, with no

variation seen in one of the in-plane Pb-Br-Pb bond angle. The out of plane bond angles

also don’t show any variation. Due to volume compression, the effect of the molecular

asymmetry becomes significant resulting a change in only one of the bond angles. This

accounts for the small changes in band gap found for the compressed structures arising

from variations in the Pb-Br-Pb angles. One can therefore infer that steric effects associ-

ated with the interactions of the molecule with the inorganic cage dictate the bond angles

and bond lengths, leading to smaller variations in the bond angles for the compressed

unit cells. Hence for compressed systems, bond length changes dominantly determine the

observed band gap variations.

The results of the expanded unit cell are however different. There is larger freedom for

the molecule to move around. Variations of the bond lengths are similar for in-plane as

well as out of plane ones. The in-plane bond angles are also found to change modestly

and symmetrically. However, similar to the compressed systems, here also the out of

plane bond angles hardly change. Hence all bond lengths and most of the bond angles

contribute to the band gap variations found for the expanded case.
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Figure 5.5: (a) Position of the MA molecule inside the octahedral cavity and its translational, orien-
tational degrees of freedom in the ac-plane. Pb-Br bond lengths and Pb-Br-Pb bond angles along the
three pseudocubic directions in the optimized structures with optimized volume of (a) MAPbBr3 and (b)
EAPbBr3. Insets: Conformation of the MA and EA molecules.

One interesting result that is common, both in case of volume expansion and contraction,

is that the out of plane Pb-Br-Pb bond angles remains invariant. This can be understood

by considering the position of the molecule inside the octahedral cavity. As shown in

Figure 5.5(a), the MA molecule inside the octahedral cavity lies in the ac-plane and

has translational degrees of freedom within the plane and small orientational degrees of

freedom about its axis [14]. The Br atoms that are part of the out of plane Pb-Br-Pb

angles lie in the same plane of the molecule and strongly interact with it. With a change

in the unit cell volume, the molecule readjust its position and orientation in the ac-plane

in such a manner that the positions of the apical Br atoms remain unchanged resulting

in no variation of the out of plane Pb-Br-Pb angles. The Br atoms that take part in the

in-plane bond angles do not lie in the same plane of the molecule and change its position

with volume change leading to deviation of the bond angles as expected.

Having understood the microscopic considerations that go into determining the band

gap, we wanted to check the effect of putting a larger molecule at the A-site. For this

we replaced MA by EA = CH3CH2NH3. EA is a larger molecule than MA and is more

asymmetric having a triangular shape with two Carbon atoms(See the inset of Figure

5.5(c), the molecule is in the octahedral cavity). For EAPbBr3 no experimental data

exists for the three dimensional compound in the perovskite structure. So, we use our

understandings of the microscopic interactions leading to the ground state structure from

MAPbBr3, and predict the favored structure for EAPbBr3(See the methodology section

for a detail description). For the purpose of comparison, the volume of MAPbBr3 was

also optimized. The structure, volume and band gap of volume optimized MAPbBr3 and

EAPbBr3 are shown in Figs. 5.5(b) and 5.5(c) respectively. Stacking of the molecules are

shown the insets. There is a 5.5% increase in volume going from MA to EA, as a result the
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Pb-Br bond lengths are found to increase. Here also the EA molecule has translational

degree of freedom in the ac-plane. As a result of this the out of plane Pb-Br-Pb bond

angles along the b-direction remain almost unchanged. The in-plane bond angles increase

from 153o to 155o as result of the larger size of the EA molecule and this has an opposite

effect on the band gap change. The band gap increases by 160 meV going from MA to

EA and the dominant contribution is from the Pb-Br bond length changes.

5.4 Conclusions

In any perovskite system(ABX3) the change in the unit cell volume due to a change in

the size of the A-site cation results in a change in the B-X bond lengths as well as B-X-B

bond angles. These are the main structural parameters that directly control the electronic

structure of the system. For instance replacing the cation at the A-site with a larger atom

results in an increase in the B-X bond length as well as B-X-B bond angles. An increase

in the bond length is found to decrease the band gap while an increase in the bond angle

results in an decreased band gap. Whether the change in bond lengths or the bond angles

control band gap changes depends entirely on the relative compressibilities of the BX6 and

AX12 polyhedra. Our calculations suggests that, for hybrid lead halide perovskites the

changes in the Pb−X bond lengths plays the dominant role in determining the changes

in the electronic structure, especially when one is compressing the unit cell. In this limit

standard concepts of structural changes discussed in the context of inorganic perovskites

are no longer valid. Steric effects of the molecule with the inorganic cage dictate the

structural changes leading to bond angles changes being small. In the expanded unit cell

limit, however both effects contribute.
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6.1 Introduction

The well known ferroelectric materials BaTiO3, PbTiO3 with an empty d shell, belong to

the perovskite family and exhibit ferroelectric properties below a certain temperature due

to a displacive phase transition [1]. Such a phase transition leads to a displacement of the

atoms which results in the development of a net dipole moment in the unit cell. These

displacements have been understood in terms of the softening of a particular phonon

mode with temperature. The frequency of that mode decreases as the temperature de-

creases, becoming soft at the transition temperature resulting in a change in the crystal

structure. The eigenvector corresponding to the soft-mode determines the structure be-

low the transition temperature. Some members of the perovskite family, for example

SrTiO3, KTaO3 have a soft polar mode that shows a decrease in the frequency with de-

creasing temperature but never becomes completely soft even at the lowest attainable

temperature. These materials are called quantum paraelectrics or incipient ferroelectrics.

Suppression of the ferroelectric phase transition has been explained by the presence of

quantum fluctuations [2, 3], which play an important role as there are several competing

structures with very small energy differences at low temperatures [3]. Associated with

the polar mode, the temperature(T) dependence of the dielectric constant(ε) also shows

anomalous behavior. Compared to ferroelectric materials there is no peak feature in the

ε(T) vs T plot. ε slowly increases with a decreasing temperature and as T→ 0 K, it

remains constant with a large value of ∼ 100 [2,4,5]. This is also in contrast with normal

dielectrics like oxides, alkali halides having a smaller value of ε between 5 and 10, and

which decreases with a decreasing temperature [5]. Incipient ferroelectrics are in a critical

state in between the ferroelectric and paraelectric state and are interesting from both a

physics and an applications point of view.

Small external perturbations have been found to be able to destroy this state and drive

the system ferroelectric [6]. For example a small amount of strain on SrTiO3 can drive

the system ferroelectric at low temperatures [7, 8]. There is also a report of room tem-

perature ferroelectricity in SrTiO3 by applying strain [9]. Another way to stabilize the

ferroelectric phase is to introduce impurities in the system. A-site, B-site and simulta-

neous A-site and B-site substitution in SrTiO3 has been studied. Small amount of Ca

doping at the Sr site drives the system ferroelectric [10, 11]. B-site substitution have

smaller effects, but substitution of two ions with different valency at the B-site, such as in

SrTi(1−x)(Mg1/3Nb2/3)xO3 show a relaxor behaviour [12] where we observe a broad peak in

the dielectric permittivity(ε′) as a function of temperature. The peak temperature(Tm)

shifts towards higher values with an increase in the measuring frequency leading to a

frequency dispersion. However no ferroelectric hysteresis was observed at low tempera-
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tures below Tm characterizing it as a glass like relaxor phase. For simultaneous A and

B-site substitution, such as in [SrTi](1−x)[PbMg1/3Nb2/3]xO3 [12, 13], a relaxor behaviour

with ferroelectric properties at low temperatures can be observed depending on the dop-

ing concentrations. Li doping at the K-site in KTaO3 also shows relaxor behaviour [14].

Relaxor behaviour in doped incipient ferroelectrics is associated with the presence of po-

lar/ferroelectric nanodomains in the system [15,16]. Formation of such polar nanodomains

are due to the presence of dipolar defects that polarizes the surrounding region depending

on the correlation length of the host material. The dipolar interactions here can lead to

long-range ferroelectric order or to a glass-like relaxor state depending on several factors,

such as concentration of the defects, polarizability of the host lattice, temperature etc.

Another example of an incipient ferroelectric apart from the perovskites, is TiO2 in the

rutile phase. The unit cell is tetragonal with a c/a ratio of ∼0.64. Ti and O atoms form

chains of edge sharing TiO6 octahedra running parallel to the c-direction. These chains are

corner shared with each other in the ab-plane. Phonon dispersions show softening of the

polar A2u mode with decreasing temperature, but never becomes completely soft [17,18].

Associated with the soft-mode, the dielectric constant measurements also shows the sig-

nature of an incipient ferroelectric [19]. There are recent reports from first principle elec-

tronic structure calculations, showing ferroelectricity in strained TiO2 [20–22]. Previously

co-doping of Nb(as donor) and In, Al, Ga(as acceptor) was reported to give rise to high

dielectric permittivity with minimal loss as a result of localization of the doped charge

carriers within the defect cluster [23]. Dielectric measurements of the (Nb+In) co-doped

samples showed both high temperature and low temperature dielectric relaxation with

a frequency dispersion in the dielectric permittivity as a function of temperature. The

high temperature dielectric relaxation above 450 K was attributed to Maxwell-Wagner

interfacial polarization, whereas the low temperature dielectric relaxation below 50 K was

attributed to the freezing of the pinned electrons within the defect clusters. This low

temperature dielectric relaxation can also be the signature of a relaxor state with the

formation of polar nanodomains as a result of co-doping. However such a possibility was

not explored here.

In this chapter, we report ab-initio density functional theory based calculations to explore

the effect of co-doping Nb(as donor) and Cr(as acceptor) in rutile TiO2. Structural

analysis shows polar distortions in the TiO6 octahedra in the vicinity of the dopants.

Nb going in to the system as Nb5+ carries an effective positive charge, whereas Cr going

as Cr3+ has an effective negative charge. Doping such an charged complex is equivalent

to doping an electric dipole. It is found that, here the dipolar electric field associated

with the doped pair is the perturbation to drive the polar distortions. Doping a donor-
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acceptor pair is different from doping individual atoms or co-doping neutral pairs. We have

examined individual dopants, co-dopants which cannot act as a dipole and hence no polar

distortion in the the TiO6 octahedra was found. Also correlation in the direction of the

polar distortions in each TiO6 octahedra, suggests formation of polar regions around the

doped dipoles. This mechanism also works when we dope Nb-In indicating that, co-doping

charged pairs can develop polar regions surrounding them in TiO2. Now, the doping

concentration and the degree of ordering of the doped dipoles decide if the system would be

ferroelectric or glass-like. Our calculations considers a perfectly ordered distribution of the

doped dipoles leading to a ferroelectric state with high value of polarization. Experimental

results however shows a ferroelectric behaviour for lower doping concentrations ≤ 5% with

a maximum value of ∼ 300 µC/m2 for 1% doping [24]. No ferroelectric properties was

found for a 10% doped sample. Our calculations shows a polarization value of ∼ 3400

µC/m2 for 2.5% doping which increases to ∼ 8400 µC/m2 for a doping concentration

of 5%. The calculated values are of the order of magnitude higher compared to the

experimentally reported values due to the initial condition of perfect ordering of the

doped dipoles. This suggests an increase in the polarization value with increasing doping.

However with increasing doping, the probability of clustering of the doped dipoles also

increases. We found within our calculation that clustering favors for a doing concentration

of 10% and has the effect of decreasing the polarization of the system to 500 µC/m2 which

would otherwise be negligible in real systems.

6.2 Methodology

The electronic structure of the systems were calculated using a projected augmented

wave (PAW) [25] implementation of density functional theory within Vienna ab-initio

simulation package (VASP) [26] [27]. The generalized gradient approximation(GGA) [28]

was used for the exchange-correlation functional. Depending on the unit cell dimensions

a Monkhorst-Pack k-mesh [29] of 4×4×4, 4×4×2 and 2×2×4 were used for the 72, 120

and 216 atom systems respectively. The supercells were generated from the experimental

tetragonal unit cell of rutile TiO2 [30]. The lattice constants were kept fixed at the

experimental values, but the internal coordinates were relaxed for a minimum energy

configuration. The internal positions were optimized till the forces on the atoms were

less than 10−3 eV/Å. In addition to this, an energy cutoff of 400 eV was used for the

kinetic energy of the plane waves included in the basis. Polarization of the systems were

calculated using the Berry Phase Technique [31, 32] within VASP.
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6.3 Results and Discussion

We started with the experimental rutile structure of TiO2 with the experimental lattice

parameters a = b = 4.59Å and c = 2.96Å. The volume of the unit cell was kept fixed

and the ionic positions were relaxed to get the minimum energy configuration. As shown

in Figure 6.1(a), the relaxed structure do not show any ferroelectric(FE) distortions,

where the Ti atoms are sitting at the center of the TiO6 octahedra. Now there was no

ferroelectric distortions in the experimental structure also and to check if we are stuck

into some local minima during the structural optimization process, we introduced a small

ferroelectric distortion in the experimental unit cell. The Ti atom at the center of the

unit cell was displaced towards one of the six O atoms surrounding it. Now the relaxed

structure showed ferroelectric distortions in the unit cell, with off-centering of the Ti

atoms along one of the Ti-O bond as shown in Figure 6.1(b). Interestingly both the

paraelectric and ferroelectric structure as shown in Figure 6.1(a) and 6.1(b) respectively,

were found to be energetically degenerate. This is in agreement with the fact that, rutile

TiO2 is an incipient ferroelectric, where quantum fluctuations prevent the ferroelectric

distortions to occur at low temperatures [3].

Figure 6.1: Upper panel : Tetragonal unit cell of TiO2. (a) No ferroelectric distortion or off-centering
of the Ti atom in the relaxed experimental unit cell. (b) Off-centering of the Ti atom in the relaxed
unit cell with an initial ferroelectric distortion. Lower panel : Two possible doping configuration among
many others where Nb, Cr replaces (c) two nearest neighbor Ti atoms in the first case, and (d) two next
nearest neighbor Ti atoms in the second case.

Next we proceed to see if co-doping Nb-Cr can remove this degeneracy between the two

competing structures. For this we first considered a 120 atom supercell of TiO2 with 40
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Ti atoms and replaced two of them with one Cr and one Nb atom. This corresponds to

a doping concentration of 5%. We considered various possible ways of doping the Nb-Cr

pair in the supercell. The most favored configuration was found to be the one where the

separation between the doped pairs was minimum with a value of 2.96Å. As shown in

Figure 6.1(c), this involves replacing two Ti atoms along the c-direction which are nearest

neighbors. This configuration was energetically favored by 40 meV over the next suitable

configuration, where the Nb and Cr was separated by 3.57Å, replacing two next nearest

neighbor Ti atoms shown in Figure 6.1(d).

Figure 6.2: The calculated up (solid line) and down (dashed line) spin projected (a) Ti d, (b) Cr d,
and (c) Nb d partial density of states at 5% of doping. The Ti atom which is just above the Cr atom is
the one for which the density of states is shown. The transition metal(TM)-oxygen bond lengths of the
(TM)O6 octahedra are shown in the insets.

Analysis of the electronic structure helps us to understand the origin of such energy

lowering for a nearest neighbor doping configuration. Atom projected partial density of

states shows that, Ti with a d0 electron configuration is in a 4+ oxidation state[Figure

6.2(a)]. Cr has a d3(Cr3+) electron configuration[Figure 6.2(b)]. An associated magnetic

moment of 2.90 µB also suggests the 3+ oxidation state of Cr. Nb with a d0 electron

configuration[Figure 6.2(c)] is in Nb5+ state. So in contrast to isovalent substitution,

here Nb carries an effective positive charge whereas Cr has an effective negative charge.

The atoms in such a charged complex attract each other via coulomb interaction and

can gain in energy when comes closer. This is the reason why a separation of 2.96Å is
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energetically favorable than 3.57Å. Also the doped atoms do not contribute any states at

the Fermi level and leaves the system insulating. Structural analysis shows off-centering

of the Ti atoms in the TiO6 octahedra in the vicinity of the doped atoms[inset of Figure

6.2(a)]. Off-centering of the Cr and Nb atoms in the c-direction was also observed[insets

of Figs. 6.2(b)-6.2(c)]. Total energy of this structure is lower by ∼ 10 meV per formula

unit over the structure where no off-centering of the transition metal(TM) atoms were

allowed, suggesting that such co-doping stabilizes the ferroelectric structure tilting the

energy balance in these incipient ferroelectrics.

The question that followed immediately was whether co-doping was essential or we could

dope either Cr or Nb in the system and the effect would be similar. This is important

because there are possibilities for both Cr and Nb to induce polar distortions in the

system individually. Cr with a d3 electron configuration is a band insulator and not J-T

active. But it may distort and gain in energy by second order Jahn-Teller effects [33]

which could lead to polar distortions being stabilized. This in-turn may trigger polar

distortions in the TiO6 octahedra. To address this we took the same supercell of TiO2

and replaced one Ti with a Mn atom which corresponds to a doping concentration of

2.50%. Mn4+ with a d3 electron configuration is a stable valence state for Mn and we

expect an isovalent substitution with charge neutrality maintained. Analysis of the partial

density of states[Figure 6.3(a)] along with a magnetic moment of 3.05 µB shows that Mn

has a d3 electron configuration and leads to an insulating state as expected. Though the

system comes out to be insulating, no off-centering of the Ti atoms as well as Mn atom

was observed in the relaxed structure[inset of Figure 6.3(a)]. Calculations were also done

for 5% doping in a similar manner by replacing two nearest neighbor Ti atoms with Mn

along the c-direction. This also gives similar result as described above without any polar

distortions in the system. Not every band insulator distorts leading to an off-centering of

transition metal atoms, and these observations are consistent with that. So doping Mn

alone doesn’t stabilize the ferroelectric state.

Now the other doped atom Nb has a large ionic radii compared to Ti. So doping Nb

is analogous to applying internal strain in the system which may again trigger polar

distortions of Ti in TiO6 octahedra. To check this we do a similar analysis by doping

a large Zr at the Ti-site. Zr is chosen as we have no associated charge doping for Zr4+.

Atom projected partial density of state [Figure 6.3(b)] along with a zero magnetic moment

shows an isovalent substitution of the Zr atom with a d0 electron configuration. Zr4+ also

has a large ionic radii and induces internal strain. Though the system comes out to be

an insulator, the structural analysis shows no off-centring in the TiO6 as well as ZrO6

octahedra [inset of Figure 6.3(b)]. Increasing the doping concentration from 2.5 to 5%
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Figure 6.3: The calculated up (solid line) and down (dashed line) spin projected (a) Mn d and (b) Zr
d partial density of states at 2.5% of doping. The transition metal-oxygen bond lengths of the (TM)O6

octahedra are shown in the insets.

was also not able to induce any polar distortions. So doping only an atom with large ionic

radii and applying internal strain is not enough to induce ferroelectricity in TiO2.

There is something more that happens when we dope two different atoms(Nb-Cr pair)

compared to doping the same type of atoms in the system. For Nb-Cr co-doping the

Ti-Cr bond length along the c-direction is 2.90Å, whereas Ti-Nb bond length is 3.04Å.

As shown in Figure 6.4(a), there is a deliberate breaking of inversion symmetry in the

c-direction for Nb-Cr doping, which is not possible when we dope the same type of atoms

(Mn or Zr) in the system. To check the role of the symmetry breaking, we doped Zr-Mn

pair in the system similar to Nb-Cr doping.

As shown in Figure 6.4(a), the Ti-Mn bond length along the c-direction is found to be

2.90Å and Ti-Zr bond length is 3.04Å. Though doping of the Zr-Mn pair broke inversion

symmetry in the c-direction, the relaxed structure showed no off-centering of either Ti,

Mn or Zr atoms[Figure 6.4(b)]. So, inversion symmetry breaking may be an essential but

not the sufficient condition to induce polar distortions in the system. Nb-Cr co-doping is

different from Zr-Mn doping where both Zr and Mn goes as Zr4+ and Mn4+. Nb going

as Nb5+ and Cr going as Cr3+ ensures an effective positive/negative charge for Nb and

Cr respectively. Such a charged complex has an electric dipole associated with it[Figure
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Figure 6.4: (a) Ti-dopant distances for different doping cases. For Nb-Cr co-doping there is a deliberate
breaking of inversion symmetry with different Cr-Ti and Nb-Ti distances along c-axis. Whereas when
we dope only Mn or Zr in the system, there is no inversion symmetry breaking. However for Zr-Mn co-
doping there is similar inversion symmetry breaking like Nb-Cr co-doping. (b) For 5% Zr-Mn co-doping,
instead of inversion symmetry breaking no off-centering of the metal atoms in the (TM)O6 octahedra
was observed. Zr-O, Mn-O and Ti-O bond lengths are shown. (c) Schematic representation of the doped
Nb-Cr pair acting as a dipole and the polarization in the nearby TiO6 octahedra.

6.4(c)]. Structural analysis shows that, the dipolar field associated with the Nb-Cr pair

polarizes the neighboring TiO6 octahedra. The off-centering in the surrounding TiO6

octahedras has a dominant component in the same direction as the doped dipole. As

shown in Figure 6.4(c), this indicates formation of small polar regions surrounding the

charged complex. Formation of such polar regions in incipient ferroelectrics are reported

to give rise to relaxor behaviour in the dielectric measurement data [15,16]. Compared to

a normal ferroelectric that shows a sharp peak at the ferroelectric transition temperature,

a relaxor shows a broad peak in the dielectric permittivity(ε′) as a function of tempera-

ture. The peak temperature(Tm) also shifts towards higher values with an increase in the

measuring frequency leading to a frequency dispersion. The low temperature state below

Tm of a relaxor can be either ferroelectric or glass like depending of the doping concen-

tration and degree of dipolar ordering. Low temperature pyrocurrent measurements of

the Nb-Cr co-doped TiO2 confirm the ferroelectric nature of the samples for a low doping

concentrations [24]. Spontaneous polarization measurements showed a maximum value of

∼ 300 µC/m2 for 1% doping and was observed for doping concentrations ≤ 5%. A doping

concentration of 10% showed no ferroelectric behaviour at any temperature.

To address this we calculated the polarization of the co-doped samples using berry phase

method. A doping concentration of 2.77% gives a polarization value of ∼ 3400µC/m2.

This increases to ∼ 8400 µC/m2 for a concentration of 5%. The calculated polarization
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Figure 6.5: Doping of two Nb-Cr pair for 10% doping with two situations. (a) Clustering and (b)
non-clustering of the two doped dipoles. For the non-clustering case, the two doped dipoles are separated
by a distance of ∼ 6.50 Å.

values are an order of magnitude higher compared to the experimental values due to per-

fect ordering of the doped dipoles considered in our calculations. This in-turn suggests an

enhanced polarization value with increasing doping concentration. But with an increasing

doping concentration, the probability of clustering also increases. For a 10% doping con-

centration we introduce a pair of (Nb-Cr) units in the supercell considering both clustered

and non-clustered geometries of the doped pairs. A typical situation of clustering and

non-clustering of the doped atoms are shown in Figs. 6.5(a) and (b) respectively. The

clustered state was found to be the ground state over the non-clustered state(by an energy

of 62 meV) where the two doped (Nb-Cr) units were far apart[see Figure 6.5(b)]. The

calculated polarization for the clustering case was found to have reduced significantly to

500 µC/m2, although one expects a negligible polarization value in the real material.

6.4 Conclusions

In summary, quantum paraelectricity is a manifestation of the competition of quantum

fluctuations with the long-range dipolar ordering. External perturbations such as strain

or pressure have been shown to induce long-range dipolar order in these systems. Con-

sidering the example of TiO2 which is known to be a quantum paraelectric, first principle

electronic structure calculations suggest that doping by either Nb or Cr has no effect on

the quantum paraelectric state. However co-doping with a donor-acceptor pair as shown

in this case (Nb-Cr pair) stabilizes the ferroelectric state. The Nb-Cr defect pair polarizes

the environment, pushing the subtle energy balance towards the ferroelectric state. The

phenomenon is reminiscent to dilute magnetic semiconductor where doping of a magnetic

atom polarizes the charge carriers. This method of dipole doping induced ferroelectricity
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can be advantageous in designing new ferroelectrics and multiferroics. It is however re-

stricted to the low doping regime as at higher concentrations one finds clustering and the

loss of polarization.
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7.1 Introduction

Ferroelectricity is a property of certain materials in which they possess a spontaneous

electric polarization that can be reversed by the application of an external electric field.

Ferroelectricity was discovered around 1920 in Rochelle salt by Valasek [1, 2]. However

the discovery of ferroelectricity in BaTiO3 by Wul and Goldman (1945, 1946) shifted

the attention of the researchers to investigate the origin of ferroelectricity in a much

simpler structure, the perovskite structure. Instead of the structural simplicity, a complete

understanding of the microscopic origin of ferroelectricity in the perovskite oxides is still

missing. Considering a fully ionic model it was shown that the origin of ferroelectricity

in BaTiO3 is a result of the competition between short-range and long-range Coulomb

forces [3–5]. The short-ranged Coulomb interactions favor the cubic paraelectric phase

whereas long-range electrostatic forces favor the ferroelectric(polar) state. Later using ab-

initio calculations it was shown that the covalent interactions between the Ti d and O p

states were essential for the ferroelectric distortions to occur [4,6]. Recently it was shown

that ferroelectricity survives in BaTiO3 even in the presence of oxygen vacancies(charge

carriers) [7]. Ferroelectric distortions were found to survive up to a critical concentration

of 0.1 electrons per unit cell [8]. This further raised the question about the role of the

long-range interactions in stabilizing ferroelectricity and it has been shown that only

the short-range portion of the screened Coulomb interactions play a role in ferroelectric

distortions, with an interaction range of the order of the lattice constant in the case of

BaTiO3.

The combined role of covalency and short-range repulsive forces resulting in the polar

distortions in BaTiO3 has been examined in details [9]. Considering structural distortions

found in the experimental unit cell of BaTiO3, it was shown within ab-initio calculations,

that the dominant distortion in tetragonal BaTiO3 is aided by short-range repulsive forces.

The displacement of the Ti atom towards one of the apical oxygens gives an energy gain

from the increased hopping between Ti and oxygen. However, this is expected to be

destabilized by the increased repulsion between the electrons on Ti and oxygen. Total

energy as a function of Ti displacement towards one of the apical oxygens in the ideal

perovskite structure shows no minimum. However movement of the planar oxygens in

the direction opposite to the Ti atoms decreases the repulsion between the electrons on

the planar oxygens and Ti, as well as that with the apical oxygens, thereby aiding the

observed ferroelectric distortions.

Like BaTiO3, PbTiO3 is also a classic example of a ferroelectric material with a per-

ovskite structure. The oxides BaTiO3 and PbTiO3 have similar cohesive properties and
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unit cell volume [4] but show very different ferroelectric behavior. Both are paraelectric

(non-polar) at high temperatures and have a simple cubic perovskite structure. BaTiO3

undergoes three ferroelectric phase transitions, cubic to tetragonal (at 393 K), tetrago-

nal to orthorhombic (at 278 K) and orthorhombic to rhombohedral (at 183 K), whereas

PbTiO3 has only one, cubic to tetragonal at 766 K. The ferroelectric distortions involve

small displacements of the cations relative to the anions, leading to a net dipole moment

per unit volume. The displacements in the tetragonal ferroelectric phase of both the

compounds are different in nature and are also larger in PbTiO3 [10]. Moreover, in the

tetragonal ferroelectric phase PbTiO3 has a large tetragonal c/a strain (6%) than BaTiO3

(1%). Interestingly the ferroelectric distortions in the tetragonal phase of PbTiO3 are dif-

ferent from that of BaTiO3. The apical oxygen atoms move in the same direction of the

Ti atom displacement. This further raises the question about the role of the short-range

forces in PbTiO3. Our calculations show that due to structural difference and additional

tetragonality the energy gain due to increased covalency is sufficient to drive a polar

distortion in the unit cell.

7.2 Methodology

The electronic structure of the systems were calculated using a projected augmented

wave (PAW) [11] implementation of density functional theory within Vienna ab-initio

simulation package (VASP) [12] [13]. The generalized gradient approximation(GGA) [14]

was used for the exchange-correlation functional. Experimental tetragonal unit cell of

BaTiO3 [15] with lattice parameters a = 3.99Å, c = 4.04Å and PbTiO3 [16] with lattice

parameters a = 3.90Å, c = 4.13Å was used. The lattice constants were kept fixed at

the experimental values, but the internal coordinates were relaxed for a minimum energy

configuration where required. The internal positions were optimized till the forces on the

atoms were less than 10−4 eV/Å. A Monkhorst-Pack k-mesh of 8 × 8 × 8 was used to

perform the k space integrations. In addition to this, an energy cutoff of 600 eV was used

for the kinetic energy of the plane waves included in the basis.

7.3 Results and Discussion

We start by giving a brief review of the results we previously have for BaTiO3 [9]. At

the high temperature, barium titanate (BaTiO3) has a cubic non-polar structure. Ba

atoms are at the corner positions of the cube, Ti atoms are at base center and O atoms



7.3. RESULTS AND DISCUSSION 171

are at face-centered positions. These are the ideal positions for which the positive and

negative charge centers coincide and we do not have any dipole moments per unit cell.

The low temperature structure [15] considered for BaTiO3 is the tetragonal structure with

ferroelectric distortions. The atoms are shifted from their ideal positions in such a way

that now there is a net dipole moment developed in the unit cell, as a result of positive

and negative charge center separation. The ferroelectric displacements of the atoms from

their ideal position are shown in Figure 7.1(a).

Figure 7.1: Experimental tetragonal unit cell of BaTiO3. (a) Displacement of atoms from their ideal
positions (b) unequal Ti-O bond lengths due to ferroelectric distortions.

Analysis of the experimental structure shows three possible microscopic interactions that

can control the energetics.

1. Energy gain from hopping due to a shorter Ti-O bond length(1.83Å) as shown in

Figure 7.1(b).

2. Energy gain from long-range Coulomb interactions arising due to the non-vanishing

dipole moments in the unit cell as a result of displacement of the atoms from their

ideal positions[Figure 7.1(a)].

3. Energy loss from short-range Coulomb repulsion as some of the atoms are coming

closer to each other.

Considering the dipolar interaction to be weak, the first question that comes is whether

the gain in band energy(increased hopping) from a shorter Ti-O bond along the c-axis,

[Figure 7.1(b)] stabilizes the ferroelectric state. To verify this a model calculation was

performed. The ideal paraelectric structure was taken where the atoms sit at their ideal
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positions in the tetragonal unit cell. Ba atoms at the corner of the unit cell, Ti atoms are

at base center and O atoms are at face-centered positions. Then the Ti atom was moved

in steps of 0.005Å from the center of the unit cell towards one of the apical oxygen while

all other atoms were sitting at their ideal positions [inset of Figure 7.2(a)]. Similarly, one

of the apical oxygen was moved towards the Ti atom while the position of all the other

atoms was kept fixed[inset of Figure 7.2(b)]. In each case, the total energy of the system

was calculated and has been plotted as a function of displacement as shown in Figure 7.2.

Figure 7.2: Total energy variation with (a) Ti displacement and (b) Apical-O displacement from their
ideal position in the ideal perovskite structure. Figures plotted with the data taken from Ref. [9]

With a displacement of the atoms from their ideal positions, we expect a gain in energy

due to an increased covalency between the Ti and apical oxygen as the distance between

them is decreasing. But as shown in Figure 7.2, no such energy lowering was observed.

There is also no minimum in the energy vs. displacement data in either case. This

suggested that the band energy gain alone was not enough to stabilize the ferroelectric

structure. Some additional interactions have to be considered. The only aspect that was

missing in the above study is the role of the planar oxygens. Displacement of the planar

oxygens in a direction opposite to that of the Ti displacement[Figure 7.1(a)] was not

entirely clear.

In order to examine that, the Hartree energy of the system was measured as a function of

the displacement of the Ti and apical oxygen, similar to the total energy calculation. This

is shown in Figs. 7.3(a) and (b) respectively. In both cases, we see a sharp increase in the
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Figure 7.3: Hartree energy variation with (a) Ti displacement and (b) apical oxygen displacement from
their ideal positions in the ideal perovskite structure. (c) Displacement of planar oxygens from their ideal
face-centered positions in the experimental structure of BaTiO3. The displacements are along the c-axis
and away from the Ti atom. Figures plotted with the data taken from Ref. [9]

Hartree energy from the very beginning as the atoms are moved from their ideal positions.

This increase in Hartree energy is expected because, as the atoms come closer, repulsion

between the electrons on Ti and O increases as a result of charge cloud overlapping. Next,

the role of the planer oxygens was examined. In this case, all the atoms were considered

at their experimental positions except the planar oxygens, which were kept at the ideal

positions(face-center position of the unit cell). In this case, it was found that as the planar

oxygens moved away from the Ti atom[inset of Figure 7.3(c)], the Hartree contribution to

the total energy decreased[Figure 7.3(c)]. The larger change in Hartree energy associated

with oxygen displacements is due to the fact that, oxygen p orbitals are much more

extended in space. One of the interesting observation in the above calculations is that,

the change in energy associated with the Ti displacement of 0.08 Å towards apical oxygens

is 0.41 eV, while that for apical oxygen is 1.57 eV for the same displacement[Figs. 7.3(a)

and (b)]. This indicates that a substantial portion of the Coulomb repulsion is between

the electrons on the apical oxygens and the planar oxygens, as a result of their extended

wave functions. So the conclusion was that the movement of the planar oxygens opposite

to the Ti provides a part of the energy reduction required to allow the Ti atom and

the apical oxygen to move towards each other. So this is how short-ranged Coulomb

interactions can be said to stabilize ferroelectricity.
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After this, in this work, we started examining the role of covalency and Coulomb repulsions

in driving the ferroelectric distortions in PbTiO3. In case of PbTiO3 the only chemical

difference that we have with respect to BaTiO3 is that Pb in the 2+ oxidation state

has a lone pair 6s electron associated with it, Pb2+ → [Xe]4f 145d106s2. This also needs

an investigation to see if the lone pair has any role for the difference in the properties

of BaTiO3 and PbTiO3. At high temperatures lead titanate (PbTiO3) also has a cubic

non-polar structure with the atoms sitting in their ideal positions. Pb atoms are at the

corner positions of the cube, Ti atoms are at base center positions and O atoms are

at face-centered positions. The low-temperature structure of PbTiO3 is tetragonal and

ferroelectric. The atoms are not in their ideal positions. So there is a net dipole moment

in the unit cell. The experimental tetragonal structure and the ferroelectric displacement

of the atoms are shown in Figure 7.4(a).

Figure 7.4: Experimental tetragonal unit cell of PbTiO3. (a) Displacement of atoms from their ideal
positions (b) unequal Ti-O bond lengths due to ferroelectric distortions.

In Contrast to BaTiO3, here all the atoms have shifted from their ideal position in the

same direction(+ve c-direction) and are also larger. Here also we start by asking the

same question. If the band energy gain (increased covalency) due to the shorter Ti-O

bond[Figure 7.4(b)] is able to stabilize the ferroelectric state. To investigate that we

considered the ideal para-electric structure and similarly moved the Ti atom towards one

of the apical oxygen [inset of Figure 7.5(a)], and one of the apical oxygen towards the Ti

atom [inset of Figure 7.5(b)]. During such displacements, all other atoms stayed at their

ideal positions. The variation in the total energy as a function of the displacement of the

atoms is shown in Figs. 7.5(a) and (b) respectively.

Now in contrast to BaTiO3, we see a prominent energy minimum associated with the

Ti atom displacement at ∼ 0.14Å from the center of the unit cell[Figure 7.5(a)]. This

suggests a favored off-center position of the Ti atom as a result of increased covalency
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Figure 7.5: Total energy variation with (a) Ti displacement and (b) Apical-O displacement from their
ideal position in the ideal perovskite structure.

which was missing in case of BaTiO3. The apical oxygen displacement, however, shows

no energy gain probably due to its repulsive interactions with the planer oxygens similar

to the case of BaTiO3. To check this further the Hartree energy was also measured as a

function of the displacement of the atoms and has been shown in Figure 7.6.

Figure 7.6: Hartree energy variation with (a) Ti displacement and (b) apical oxygen displacement from
their ideal positions in the ideal perovskite structure.

Hartree energy increases as expected as a result of increased coulomb repulsion between

the electron clouds. Here also we see a larger increase in the Hartree energy associated

with apical oxygen displacement compared to Ti atom, indicating the repulsive interaction

between the apical and planer oxygens. This is the reason that we do not see any minimum

in the total energy plot when the apical oxygen was displaced towards the Ti atom. The

energy loss due to increased Coulomb repulsion dominates over the gain from covalency.

So, the main difference between BaTiO3 and PbTiO3 is that in case of PbTiO3 total

energy as a function of Ti displacement from its ideal position shows an energy minimum

which was absent in case of BaTiO3. Considering the chemical and structural differences,
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Figure 7.7: Unit cell dimension and tetragonality of the (a) BaTiO3 and (b) PbTiO3 unit cell with
the atoms sitting in their ideal positions. (c) Total energy variation with Ti displacement towards apical
oxygen in BaTiO3 with the experimental lattice parameters of PbTiO3.

there can be two possible reasons for the energy minimum. (1) The structural difference:

Tetragonal distortion is large in PbTiO3 than BaTiO3[Figs. 7.7(a) and (b)]. The c/a

ratio in PbTiO3 is 1.06, larger compared to BaTiO3 where it is an order of 1.01. (2) The

lone pair effect of the Pb 6s states which was mentioned at the beginning. To examine

these aspects, we took the ideal paraelectric structure of PbTiO3 and replace Pb with

Ba. This is equivalent to considering BaTiO3 with the same tetragonality of the PbTiO3

unit cell. Then we calculated the total energy as a function of Ti displacement from its

ideal position towards one of the apical oxygen. The result is shown in Figure 7.7(c). We

see exactly the same description as was seen for the case of PbTiO3. We get an energy

minimum of ∼ 0.14Å. So we see that the additional tetragonal distortion rather than the

lone pair effect is responsible for the ferroelectric behavior in PbTiO3. In PbTiO3 there

is more spacing along the c-direction compared to BaTiO3. As shown in Figs. 7.7(a) and

(b), the distance between the Ti atom and apical oxygen in the ideal paraelectric structure

of PbTiO3 is ∼ 2.07 Å, larger compared to BaTiO3, where it is ∼ 2.01 Å. As a result, the

energy gain due to increased hopping is greater than energy loss due to Coulomb repulsion
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between the Ti and apical oxygen in PbTiO3. However, we need further investigation to

see if the lone pair plays any crucial role for this large tetragonality in PbTiO3.

7.4 Conclusions

Cation displacements in perovskite titanates give rise to long-range ferroelectric order.

In case of the well-known ferroelectrics, BaTiO3 and PbTiO3 the cation displacements

are similar in nature but are aided by different microscopic interactions due to their

structural differences. In case of BaTiO3 the short-range and long-range Coulomb forces

play a crucial role to stabilize the ferroelectric state. The displacement of the Ti atom

towards one of the apical oxygens is aided by movement of the planar oxygens in the

direction opposite to the Ti atom that decreases the repulsion between the electrons on

the planar oxygens and Ti, as well as that with the apical oxygens. In contrast PbTiO3

has a large tetragonal c/a strain (6%) than BaTiO3(1%), and our calculations show that

the band energy gain from cation displacement is enough to stabilize the ferroelectric

distortion. However, the lone pair 6s electrons associated with Pb may play a crucial role

for a larger tetragonality of PbTiO3 that needs further investigation.
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There is a strong correlation between the structure and the property of a material. Tun-

ability in the property has been achieved by varying parameters which induce changes in

the structure. Considering the well studied perovskite oxides given by the formula ABO3

where the A-site is usually occupied by a rare earth atom or an alkali metal atom and

the B-site is a transition metal atom, one finds that a change in the size of the atom

occupying the A-site results in changes in the electronic structure. The system could be

either insulating or metallic, with changes being induced in the temperature at which the

metal to insulator transition happens. As pointed out earlier, the changes emerge from

structural changes induced by a number of parameters.

In the third chapter of this thesis, we have studied the structure-property relations in in-

organic perovskites taking the example of the rare earth nickelates, and show how the size

of the rare earth atom control the electronic properties via modulation in the structure.

The rare earth nickelates exhibit metal-insulator transitions(MIT) for all members of the

family RNiO3 (where R denotes a rare earth ion), with the exception of R = La. The

metal-insulator transition is coincident with a crystal distortion, where the insulating state

is characterized by a two-sublattice symmetry breaking, with Ni on one sublattice having

a decreased mean Ni-O bond length and the Ni on the other having an increased mean

Ni-O bond length, defining a bond disproportionation/breathing mode distortion(BD).

This state is sometimes also referred to as “charge-ordered(CO)” state. According to Za-

anen, Sawatzky, Allen(ZSA), the electronic structure of 3d transition metal compounds

are described by three parameters. The coulomb correlation strength within the transi-

tion metal 3d manifold(U), transition metal d bandwidth(W) and ∆, given by the energy

required to transfer an electron from the oxygen p levels to the transition metal d levels.

∆ plays an important role in the late transition metal oxides. In this work using density

functional theory(DFT) and model Hamiltonian approach, we show that occurrence of

the insulating state with bond disproportionation in Neodymium nickelate(NdNiO3) is

intimately related to a negative value of the effective charge transfer energy(a negative

value of ∆eff ). The breathing mode distortion occurs when the Ni d band enters the

oxygen p band and there are holes on the oxygen. For positive values of ∆eff system

becomes metallic with the absence of a breathing mode distortion. Along with this, we

calculate the ∆eff for all the rare earth nickelates. For R = Lu to Pr the values lie in

the range of -0.41 to -0.27 eV indicating a situation where the Ni d band just enters

the oxygen p band. As a result, the ground state(GS) of the compounds are insulating

with bond disproportionation. For LaNiO3, the value of ∆eff is ∼ -0.62 eV and the GS

is metallic without any bond disproportionation. So, from here we can conclude that a

negative value of delta is necessary for bond disproportionation to occur, however, there

is a critical value beyond which the itinerant limit is reached. There will be larger band
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overlap and system becomes metallic suppressing the MIT. We also show that, although

among the bulk rare earth nickelates the charge ordering seems almost ubiquitous, as

the size is reduced, one finds that there is a critical length scale below which one has

incomplete charge order/ no charge order consistent with the experimental result.

In the fourth chapter, we investigate the properties of hybrid perovskites where at the A-

site there is an organic molecule, which plays a complex role in determining the structure

and hence electronic properties. In contrast to earlier where one had a spherical atom,

in the present case, one has a cylindrical object occupying the A-site. The presence of

a molecule at the A-site of a hybrid perovskite leads to unusual behavior compared to

its inorganic counterpart. Considering the case of (CH3NH3)PbBr3, we find that it is

both the size of the molecule as well as its orientation in the cage formed by the Pb

and Br atoms which determine the favored structure. At the microscopic level, the basic

energetics which comes into play are steric effects as well as hydrogen bonding. While

the molecule is asymmetrically placed in the cuboctahedral cavity, a mapping of the

ab − initio band structure to a tight-binding model reveals that the movement of the

amine end(NH3) of the molecule towards the Br atoms is driven primarily by electrostatic

considerations. While the hydrogen bonding is responsible for driving the octahedral tilts,

the energy lowering considerations do not follow a simple prescription of minimizing H-Br

bond lengths. The presence of several competing energetics results in a complex low-

energy landscape with deep valleys and high barriers between them which could explain

the glassy dynamics seen even at low temperatures in the orthorhombic structure where

the dipoles are believed to be frozen.

In the fifth chapter, we investigate the effect of replacing the organic molecule at the A-site

of a hybrid perovskite system. In any perovskite system(ABX3) the change in the unit

cell volume due to a change in the size of the A-site cation results in a change in the B-X

bond lengths as well as B-X-B bond angles. These are the main structural parameters

that directly control the electronic structure of the system. For instance, replacing the

cation at the A-site with a larger atom results in an increase in the B-X bond length as

well as B-X-B bond angles. An increase in the bond length is found to decrease the band

gap while an increase in the bond angle results in a decreased band gap. Whether the

change in bond lengths or the bond angles control band gap changes depends entirely on

the relative compressibilities of the BX6 and AX12 polyhedra. Our calculations suggest

that for hybrid lead halide perovskites the changes in the Pb-X bond lengths plays the

dominant role in determining the changes in the electronic structure, especially when

one is compressing the unit cell. In this limit standard concepts of structural changes

discussed in the context of inorganic perovskites are no longer valid. Steric effects of the
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molecule with the inorganic cage dictate the structural changes leading to bond angles

changes being small. In the expanded unit cell limit, however, both effects contribute.

In the sixth chapter, we have studied the effect of doping a dipole into an incipient

ferroelectric material. In a ferroelectric material, microscopic dipole moments are formed

due to cation displacements from their ideal positions in the paraelectric structure. The

ordering of such microscopic dipoles in a material may or may not take place leading to

ferroelectric properties. On the other hand, there are materials which are on the brink

of a ferroelectric transition, where the dipolar order is being suppressed by quantum

fluctuations. Usual examples of ferroelectrics are d0 materials i.e. those which have

an empty d shell. This has been an empirical principle being used to roughly identify

materials which would be ferroelectric. While not all d0 materials are ferroelectric, it has

been seen that several of them could be identified as incipient ferroelectrics, where there

is no ferroelectric order down to low temperatures. TiO2 is one such example. In such

materials, a small perturbation could drive the system ferroelectric. In this work using

ab-initio density functional theory calculations, we explore doping a Nb-Cr pair in TiO2

as a route to drive it ferroelectric. Nb and Cr go into the 5+ and 3+ valence states

and therefore behave like a dipole. Analogous to dilute magnetic semiconductors, where

doping small concentrations of magnetic atoms in otherwise non-magnetic materials drives

the system magnetic, here, the introduction of the dipole is shown to polarize regions in

the vicinity of the dopant. Ferroelectricity is therefore found to be stabilized. While

this mechanism is indeed found to work at low concentration Nb-Cr doping, at higher

doping concentrations a clustering of the dopant atoms is found to destroy long-range

ferroelectric order.

Finally, in chapter seven we show how structural differences can lead to dissimilar ferro-

electric properties considering two well known ferroelectric materials BaTiO3 and PbTiO3.

Tetragonality in the ferroelectric structure of BaTiO3 is smaller than PbTiO3. Hence the

off-center displacement of the Ti atom along the tetragonal axis is assisted by short ranged

repulsion forces that push the planer oxygen atoms in the opposite direction to that of the

Ti atom. Whereas due to a larger tetragonality in PbTiO3, Ti displacement is dominated

by the covalency gain between Ti atom and apical oxygen.
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Appendix A

A.1 a−b−c− octahedral tilt pattern

Figure A.1: a−b−c− octahedral tilt pattern viewed along the b-axis when the system was relaxed with
a molecular orientation along the body diagonal of the cavity as shown in the upper panel of Figure 4.1(c)
of chapter 4.

A.2 Finding the favored orientation of the molecule

inside the cavity

Apart from steric effects, hydrogen bonding between the molecule and the Br ions also play

an important role in determining the ground state orientation inside the ideal octahedral

cavity. In order to probe how important hydrogen bonding was for the orientation that the

molecule adopted, we again consider the two configurations/orientations of the molecule

shown in Figure 4.1(c) of chapter 4. The first direction of orientation is perpendicular

to one of the four faces of the cavity parallel to the b-axis shown by the shaded area in

Figure A.2(a). The second direction is along one of the large body diagonals of the cavity,

1
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and the corresponding anion plane is shown by a dotted area in Figure A.2(a). Indeed

maximizing hydrogen bonding would involve short bonds made between hydrogen and

the Br atoms. The molecule was oriented along both these direction in the ideal structure

and only the molecule was allowed to relax and gain energy from hydrogen bonding.

Figure A.2: (a) Two anionic planes corresponding to the two possible orientations of the molecule and
the relevant HN -Br distances after the molecule was relaxed are shown for orientation of the molecule
towards (b) plane 1 and (c) plane 2. The hydrogen bonds less than 3Å are shown with solid green lines.

Figure A.3: (a) Distance between the amine part(nitrogen atom) of the molecule and the corresponding
anion plane after the molecule was relaxed with an orientation towards (a) plane 1 and (b) plane 2.

In both the cases the amine part of the molecule was found to move towards the Br

planes. Shorter HN -Br distances were found in the first case[Figure A.2(b)] where the

molecule was able to move closer to the anion plane[Figure A.3(a)]. For the second

case, the close proximity of the Pb atoms prevented the molecule to come too close to the

anion plane[Figure A.3(b)] resulting in a weaker hydrogen bonding with the anions[Figure

A.2(c)]. Hence the former orientation that has shorter H-Br distance was found to be

favored by 32 meV per formula unit over the other. These results help us conclude

that while the orientation of the molecule controls the octahedral rotations, the favored

orientation is determined by other additional factors such as steric effects, interaction
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between the molecule and the inorganic cage as was mentioned in the main text of chapter

4. For performing a DFT calculation with a new molecule at the A-site and see the changes

that it can induce in the electronic structure, the first task would be to get the ground

state structure of the system. But the problem is that we cannot put the molecule inside

the cavity in any arbitrary orientation. Due to the complex potential energy landscape

the calculation may get stuck in some local minima. To reach the ground state structure

the ground state orientation of the molecule needs to be determined. We can perform the

following steps to determine that:

1. Take the inorganic network where we want to put the molecule and switch off the

octahedral tilts.

2. Take the molecule and orient it in such a way that the amine part faces the anionic

planes.

3. Select the anionic plane/orientation in the undistorted cavity that gives the max-

imum H-bonding when only the molecule is relaxed. Relaxing the whole system

from this configuration gives the ground state structure.

A.3 Conformation of the molecule

There is a dipole moment associated with the molecule due to different electronegativities

of the C and N atoms. The two possible stacking of the dipoles along the b-axis is shown

in Figure A.4(a) and the arrangement in the ac-plane is shown in Figure A.4(b).

Figure A.4: (a) Ferroelectric and antiferroelectric stacking of the molecular dipoles along the b-axis.
(b) Orthogonal arrangement of the dipoles in the ac-plane
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A.4 Fitting of Tight binding and Ab-initio band

structure

The superposition of the ab-initio and tight binding bands for case1 and case2(refer to

section 3 of chapter 4) are shown in Figure A.5(a) and A.5(b)respectively.

Figure A.5: The fitting of tight-binding and ab-initio band structure for (a) case1, where the molecule
is at the center of the cavity without any octahedral tilts. (b) case2, where the molecule is allowed to
move for maximum hydrogen bonding.


